simsurv: A Package for Simulating Simple or Complex Survival Data

Sam Brilleman^{1,2}, Rory Wolfe^{1,2}, Margarita Moreno-Betancur^{2,3,4}, Michael J. Crowther⁵

useR! Conference 2018

Brisbane, Australia

10-13th July 2018

¹ Monash University, Melbourne, Australia
 ² Victorian Centre for Biostatistics (ViCBiostat)
 ³ Murdoch Children's Research Institute, Melbourne, Australia
 ⁴ University of Melbourne, Melbourne, Australia
 ⁵ University of Leicester, Leicester, UK

Outline

• Background to survival analysis

• A general method for simulating event times

• Examples of using the 'simsurv' package

• Summary

What is survival analysis?

• The analysis of a variable that corresponds to the **time from a defined baseline** (e.g. diagnosis of a disease) until **occurrence of an event** of interest (e.g. heart failure).

What is survival analysis?

- The analysis of a variable that corresponds to the **time from a defined baseline** (e.g. diagnosis of a disease) until **occurrence of an event** of interest (e.g. heart failure).
- Also known as:
 - Time-to-event analysis
 - Duration analysis (economics)
 - Reliability analysis (engineering)
 - Event history analysis (sociology)

What is survival analysis?

- The analysis of a variable that corresponds to the **time from a defined baseline** (e.g. diagnosis of a disease) until **occurrence of an event** of interest (e.g. heart failure).
- Also known as:
 - Time-to-event analysis
 - Duration analysis (economics)
 - Reliability analysis (engineering)
 - Event history analysis (sociology)
- The context for this talk will be health research
 - Each observational unit will be an "individual" (e.g. a patient)

• To evaluate the performance of new or existing statistical methods for survival analysis

- To evaluate the performance of new or existing statistical methods for survival analysis
- To calculate statistical power, e.g. in planning clinical trials

- To evaluate the performance of new or existing statistical methods for survival analysis
- To calculate statistical power, e.g. in planning clinical trials
- To calculate uncertainty in model predictions, e.g. transition probabilities in multistate models

- To evaluate the performance of new or existing statistical methods for survival analysis
- To calculate statistical power, e.g. in planning clinical trials
- To calculate uncertainty in model predictions, e.g. transition probabilities in multistate models

• ...others?

Modelling survival data

- Let T_i^* denote the "true" event time for individual *i*
- In practice, T_i^* may not be observed due to right censoring, e.g. the study ending before an individual experiences the event

Modelling survival data

- Let T_i^* denote the "true" event time for individual *i*
- In practice, T_i^* may not be observed due to right censoring, e.g. the study ending before an individual experiences the event
- **Possible to model** T_i^* **directly**, e.g. "accelerated failure time (AFT)" models

Modelling survival data

- Let T_i^* denote the "true" event time for individual *i*
- In practice, T_i^* may not be observed due to right censoring, e.g. the study ending before an individual experiences the event
- **Possible to model** T_i^* **directly**, e.g. "accelerated failure time (AFT)" models
- But more common to model the *rate* of occurrence of the event (e.g. the "Cox" model)
- The *hazard* at time *t* is defined as the *instantaneous rate* of occurrence for the event at time *t*

$$h_i(t) = \lim_{\Delta t \to 0} \frac{P(t \le T_i^* < t + \Delta t \mid T_i^* > t)}{\Delta t}$$

The hazard, cumulative hazard & survival

- Hazard (for individual *i*): $h_i(t)$
- Cumulative hazard: $H_i(t) = \int_{s=0}^t h_i(s) ds$
- Survival probability: $S_i(t) = P(T_i^* > t) = \exp(-H_i(t))$

The hazard, cumulative hazard & survival

- Hazard (for individual *i*): $h_i(t)$
- Cumulative hazard:
- Survival probability:

$$H_i(t) = \int_{s=0}^t h_i(s) ds$$

$$S_i(t) = P(T_i^* > t) = \exp(-H_i(t))$$

This is the complement of the CDF for the distribution of event times

The hazard, cumulative hazard & survival

- Hazard (for individual *i*): $h_i(t)$
- Cumulative hazard:
- Survival probability:

$$H_i(t) = \int_{s=0}^t h_i(s) ds$$
$$S_i(t) = P(T_i^* > t) = \exp(-H_i(t))$$

This is the complement of the CDF for the distribution of event times

• The "probability integral transformation" tells us $1 - F_X(X) = U$, where $F_X(.)$ is the CDF of a continuous random variable *X*, and *U* is a uniform random variable on the range 0 to 1

• The result from the previous slide tells us

$$\exp\left(-H_i(T_i^s)\right) = U_i \implies T_i^s = H_i^{-1}(-\log(U_i))$$

where

- T_i^s is a randomly drawn (i.e. simulated) event time for individual i
- U_i is a random uniform variable on the range 0 to 1
- $H_i(t) = \int_{s=0}^t h_i(s) ds$ is the cumulative hazard evaluated at time t

• The result from the previous slide tells us

$$\exp\left(-H_i(T_i^s)\right) = U_i \implies T_i^s = H_i^{-1}(-\log(U_i))$$

where

- T_i^s is a randomly drawn (i.e. simulated) event time for individual i
- U_i is a random uniform variable on the range 0 to 1
- $H_i(t) = \int_{s=0}^t h_i(s) ds$ is the cumulative hazard evaluated at time t
- Commonly known as the 'cumulative hazard inversion method' [1,2]
- Easy and efficient when $H_i(t)$ has a closed form and is invertible

Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. *Operations Research*, 1987: 35(6); 892–894.
 Bender R et al. Generating survival times to simulate Cox proportional hazards models. *Statistics in Medicine*. 2005: 24(11); 1713–1723.

• The result from the previous slide tells us

$$\exp\left(-H_i(T_i^s)\right) = U_i \implies T_i^s = H_i^{-1}(-\log(U_i))$$

where

- T_i^s is a randomly drawn (i.e. simulated) event time for individual i
- U_i is a random uniform variable on the range 0 to 1
- $H_i(t) = \int_{s=0}^t h_i(s) ds$ is the cumulative hazard evaluated at time t
- Commonly known as the 'cumulative hazard inversion method' [1,2]
- Easy and efficient when $H_i(t)$ has a closed form and is invertible
- But for complex specifications of $h_i(t)$:

[1] Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. *Operations Research*, 1987: 35(6); 892–894.

[2] Bender R et al. Generating survival times to simulate Cox proportional hazards models. *Statistics in Medicine*. 2005: 24(11); 1713–1723.

• The result from the previous slide tells us

$$\exp\left(-H_i(T_i^s)\right) = U_i \implies T_i^s = H_i^{-1}(-\log(U_i))$$

where

- T_i^s is a randomly drawn (i.e. simulated) event time for individual i
- U_i is a random uniform variable on the range 0 to 1
- $H_i(t) = \int_{s=0}^t h_i(s) ds$ is the cumulative hazard evaluated at time t
- Commonly known as the 'cumulative hazard inversion method' [1,2]
- Easy and efficient when $H_i(t)$ has a closed form and is invertible
- But for complex specifications of $h_i(t)$:
 - $H_i(t)$ may not have a closed form

Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. *Operations Research*, 1987: 35(6); 892–894.
 Bender R et al. Generating survival times to simulate Cox proportional hazards models. *Statistics in Medicine*. 2005: 24(11); 1713–1723.

• The result from the previous slide tells us

$$\exp\left(-H_i(T_i^s)\right) = U_i \implies T_i^s = H_i^{-1}(-\log(U_i))$$

where

- T_i^s is a randomly drawn (i.e. simulated) event time for individual i
- U_i is a random uniform variable on the range 0 to 1
- $H_i(t) = \int_{s=0}^t h_i(s) ds$ is the cumulative hazard evaluated at time t
- Commonly known as the 'cumulative hazard inversion method' [1,2]
- Easy and efficient when $H_i(t)$ has a closed form and is invertible
- But for complex specifications of $h_i(t)$:
 - $H_i(t)$ may not have a closed form
 - $H_i(t)$ may not be invertible

Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. *Operations Research*, 1987: 35(6); 892–894.
 Bender R et al. Generating survival times to simulate Cox proportional hazards models. *Statistics in Medicine*. 2005: 24(11); 1713–1723.

The result from the previous slide tells us •

$$\exp\left(-H_i(T_i^s)\right) = U_i \implies T_i^s = H_i^{-1}(-\log(U_i))$$

where

- T_i^s is a randomly drawn (i.e. simulated) event time for individual *i*
- U_i is a random uniform variable on the range 0 to 1
- $H_i(t) = \int_{s=0}^t h_i(s) \, ds$ is the cumulative hazard evaluated at time t
- Commonly known as the 'cumulative hazard inversion method' [1,2] •
- Easy and efficient when $H_i(t)$ has a closed form and is invertible •
- But for complex specifications of $h_i(t)$:
 - $H_i(t)$ may not have a closed form \rightarrow numerical integration (quadrature)

• $H_i(t)$ may not be invertible

^[1] Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. Operations Research, 1987: 35(6); 892–894. [2] Bender R et al. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine. 2005: 24(11); 1713–1723.

• The result from the previous slide tells us

$$\exp\left(-H_i(T_i^s)\right) = U_i \implies T_i^s = H_i^{-1}(-\log(U_i))$$

where

- T_i^s is a randomly drawn (i.e. simulated) event time for individual i
- U_i is a random uniform variable on the range 0 to 1
- $H_i(t) = \int_{s=0}^t h_i(s) ds$ is the cumulative hazard evaluated at time t
- Commonly known as the 'cumulative hazard inversion method' [1,2]
- Easy and efficient when $H_i(t)$ has a closed form and is invertible
- But for complex specifications of $h_i(t)$:
 - $H_i(t)$ may not have a closed form
 - $H_i(t)$ may not be invertible

- → numerical integration (quadrature)
- \rightarrow iterative univariate root finding

Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. *Operations Research*, 1987: 35(6); 892–894.
 Bender R et al. Generating survival times to simulate Cox proportional hazards models. *Statistics in Medicine*. 2005: 24(11); 1713–1723.

A general algorithm for simulating event times

• Crowther and Lambert [3] describe an algorithm as follows

^[3] Crowther MJ, Lambert PC. Simulating Biologically Plausible Complex Survival Data. *Statistics in Medicine*, 2013: 32(23); 4118–4134.

^[4] Crowther MJ, Lambert PC. Simulating Complex Survival Data. The Stata Journal, 2012: 12(4); 674–687.

^[5] Brilleman S. (2018) simsurv: Simulate Survival Data. R package version 0.2.2. <u>https://CRAN.R-project.org/package=simsurv</u>

A general algorithm for simulating event times

• Crowther and Lambert [3] describe an algorithm as follows

- This method was implemented in a Stata package [4]
- Now also implemented in R as part of the 'simsurv' package [5]

^[3] Crowther MJ, Lambert PC. Simulating Biologically Plausible Complex Survival Data. *Statistics in Medicine*, 2013: 32(23); 4118–4134.

^[4] Crowther MJ, Lambert PC. Simulating Complex Survival Data. The Stata Journal, 2012: 12(4); 674–687.

^[5] Brilleman S. (2018) simsurv: Simulate Survival Data. R package version 0.2.2. https://CRAN.R-project.org/package=simsurv

• Built around one function: simsurv()

- Built around one function: simsurv()
- Can simulate survival times from:
 - Standard parametric survival distributions (exponential, Weibull, Gompertz)
 - Two-component mixture survival distributions
 - Covariate effects under proportional hazards
 - Covariate effects under non-proportional hazards (i.e. time-dependent effects)
 - Clustered survival times (e.g. shared frailty, meta-analytic models)
 - Time-varying covariates
 - Any user-defined hazard, log hazard, or cumulative hazard function

- Built around one function: simsurv()
- Can simulate survival times from:
 - Standard parametric survival distributions (exponential, Weibull, Gompertz)
 - Two-component mixture survival distributions
 - Covariate effects under proportional hazards
 - Covariate effects under non-proportional hazards (i.e. time-dependent effects)
 - Clustered survival times (e.g. shared frailty, meta-analytic models)
 - Time-varying covariates
 - Any user-defined hazard, log hazard, or cumulative hazard function
- Uses analytical forms where possible, otherwise
 - Gauss-Kronrod quadrature to evaluate $H_i(t)$
 - Brent's univariate root finder to invert $H_i(t)$ (via the uniroot function in R)

- Built around one function: simsurv()
- Can simulate survival times from:
 - Standard parametric survival distributions (exponential, Weibull, Gompertz)
 - Two-component mixture survival distributions
 - Covariate effects under proportional hazards
 - Covariate effects under non-proportional hazards (i.e. time-dependent effects)
 - Clustered survival times (e.g. shared frailty, meta-analytic models)
 - Time-varying covariates
 - Any user-defined hazard, log hazard, or cumulative hazard function
- Uses analytical forms where possible, otherwise
 - Gauss-Kronrod quadrature to evaluate $H_i(t)$
 - Brent's univariate root finder to invert $H_i(t)$ (via the uniroot function in R)

Example 1: Standard parametric proportional hazards model

General model:

 $h_i(t) = h_0(t) \exp\left(\boldsymbol{X}_i^T \boldsymbol{\beta}\right)$

Example model: Weibull model with proportional hazards

 $h_i(t) = \lambda \gamma t^{\gamma-1} \exp(X_i \beta)$

Covariates:

 $X_i \sim \text{Bern}(0.5)$ (e.g. a binary treatment indicator)

Parameters:

$\lambda = 0.1$	(scale parameter)
$\gamma = 1.5$	(shape parameter)
$\beta = -0.5$	(log hazard ratio)

Example 1: Standard parametric proportional hazards model

pars <- c(trt = -0.5)

Example 2: Two-component mixture survival distribution

General model:

$$S_i(t) = (p S_1(t) + (1-p) S_2(t))^{\exp(X_i^T \beta)}$$
 where 0

Example model: Weibull mixture model with proportional hazards

$$S_i(t) = (p \exp(-\lambda_1 t^{\gamma_1}) + (1-p) \exp(-\lambda_2 t^{\gamma_2}))^{\exp(X_i\beta)}$$

Covariates:

 $X_i \sim \text{Bern}(0.5)$ (e.g. a binary treatment indicator)

Parameters:

$\lambda_1 = 1.5, \ \lambda_2 = 0.1$	(scale parameters)
$\gamma_1 = 3.0, \ \gamma_2 = 1.2$	(shape parameters)
p = 0.2	(mixing parameter)
$\beta = -0.5$	(log hazard ratio)

Example 2: Two-component mixture survival distribution

Define true coefficient (log hazard ratio)
pars <- c(trt = -0.5)</pre>

```
# Simulate the event times
times <- simsurv(dist = 'weibull',
    lambdas = c(1.5, 0.1),
    gammas = c(3.0, 1.2),
    mixture = TRUE,
    pmix = 0.2,
    x = covs,
    betas = pars)</pre>
```


Example 3: Non-proportional hazards

General model:

$$h_i(t) = h_0(t) \exp\left(X_{i1}^T \boldsymbol{\beta}_1 + X_{i2}^T \boldsymbol{\beta}_2 f(t)\right)$$

Example model: Weibull model with non-proportional hazards

$$h_i(t) = \lambda \gamma t^{\gamma - 1} \exp(\beta_0 X_i + \beta_1 X_i \log(t))$$

Covariates:

 $X_i \sim \text{Bern}(0.5)$ (e.g. a binary treatment indicator)

Parameters:

- $\lambda = 0.1$ (scale parameter)
- $\gamma = 1.5$ (shape parameter)

 $\beta_0 = -0.5$ (log hazard ratio when $\log(t) = 0$)

 $\beta_1 = 0.4$ (change in log hazard ratio per unit change in $\log(t)$)

Example 3: Non-proportional hazards


```
# Define true coefficients
pars <- c(trt = -0.5) # time-fixed coefficient
pars_tde <- c(trt = 0.4) # time-varying coefficient</pre>
```


Example 4: Clustered survival times

General model:

$$h_{ij}(t) = h_0(t) \exp\left(X_{ij}^T \boldsymbol{\beta} + Z_{ij}^T \boldsymbol{b}_j\right)$$

Example model: Weibull meta-analytic model for RCTs

$$h_{ij}(t) = \lambda \gamma t^{\gamma-1} \exp \left(X_{ij} (\beta + b_j) \right)$$

Covariates:

 $X_{ij} \sim \text{Bern}(0.5)$ (e.g

(e.g. a binary treatment indicator)

ViCBiostat

Parameters:

$\lambda = 0.1$	(scale parameter)
$\gamma = 1.5$	(shape parameter)
$\beta = -0.5$	(population average treatment effect)
$b_j \sim N(0, 0.2)$	(study-specific deviation)

Example 4: Clustered survival times

Dimensions

n <- 50 # number of patients per study
J <- 200 # total number of studies
N <- n * J # total number of patients</pre>

```
# Define covariate data
covs <- data.frame(id = 1:N,
    study = rep(1:J, each = n),
    trt = rbinom(N, 1, 0.5))</pre>
```

```
# Define true coefficients
trt_j <- -0.5 + rnorm(J, 0, 0.2)
pars <- data.frame(trt = rep(trt_j, each = n))</pre>
```


• The method only requires that we can specify the hazard for the data generating model

- The method only requires that we can specify the hazard for the data generating model
- I showed examples for some common scenarios, for which 'simsurv' has convenient arguments the user can specify

- The method only requires that we can specify the hazard for the data generating model
- I showed examples for some common scenarios, for which 'simsurv' has convenient arguments the user can specify
- I did not demonstrate "user-defined" hazard functions, which can allow even more flexibility
 - e.g. time-varying covariates, joint longitudinal-survival models, Royston-Parmar models, etc

- The method only requires that we can specify the hazard for the data generating model
- I showed examples for some common scenarios, for which 'simsurv' has convenient arguments the user can specify
- I did not demonstrate "user-defined" hazard functions, which can allow even more flexibility
 - e.g. time-varying covariates, joint longitudinal-survival models, Royston-Parmar models, etc
- Computation times are "relatively" fast, e.g.
 - 10,000 event times under a standard Weibull distribution (< 1 sec)
 - 10,000 event times under a user-defined hazard function (~10 sec)

- The method only requires that we can specify the hazard for the data generating model
- I showed examples for some common scenarios, for which 'simsurv' has convenient arguments the user can specify
- I did not demonstrate "user-defined" hazard functions, which can allow even more flexibility
 - e.g. time-varying covariates, joint longitudinal-survival models, Royston-Parmar models, etc
- Computation times are "relatively" fast, e.g.
 - 10,000 event times under a standard Weibull distribution (< 1 sec)
 - 10,000 event times under a user-defined hazard function (~10 sec)
- Future work: competing risks, vectorisation of 'uniroot'

Thank you!

Acknowledgements

- My supervisors: Rory Wolfe, Margarita Moreno-Betancur, Michael J. Crowther
- CRAN and useR volunteers!

References

Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. Operations Research, 1987: 35(6); 892–894.
 Bender R et al. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine. 2005: 24(11); 1713–1723.
 Crowther MJ, Lambert PC. Simulating Biologically Plausible Complex Survival Data. *Statistics in Medicine*, 2013: **32**(23); 4118–4134.
 Crowther MJ, Lambert PC. Simulating Complex Survival Data. *The Stata Journal*, 2012: **12**(4); 674–687.
 Brilleman S. (2018) simsurv: Simulate Survival Data. R package version 0.2.2. https://CRAN.R-project.org/package=simsurv

