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What is survival analysis?

• The analysis of a variable that corresponds to the time from a defined baseline (e.g. 

diagnosis of a disease) until occurrence of an event of interest (e.g. heart failure). 
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What is survival analysis?

• The analysis of a variable that corresponds to the time from a defined baseline (e.g. 

diagnosis of a disease) until occurrence of an event of interest (e.g. heart failure). 

• Also known as:

• Time-to-event analysis

• Duration analysis (economics)

• Reliability analysis (engineering)

• Event history analysis (sociology)

• The context for this talk will be health research

• Each observational unit will be an “individual” (e.g. a patient)

5



Why simulate survival data?

• To evaluate the performance of new or existing statistical methods for survival analysis
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Why simulate survival data?

• To evaluate the performance of new or existing statistical methods for survival analysis

• To calculate statistical power, e.g. in planning clinical trials

• To calculate uncertainty in model predictions, e.g. transition probabilities in multistate models

• …others?
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Modelling survival data

• Let 𝑇𝑖
∗ denote the “true” event time for individual 𝑖

• In practice, 𝑇𝑖
∗ may not be observed due to right censoring, e.g. the study ending before 

an individual experiences the event
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• Let 𝑇𝑖
∗ denote the “true” event time for individual 𝑖

• In practice, 𝑇𝑖
∗ may not be observed due to right censoring, e.g. the study ending before 

an individual experiences the event

• Possible to model 𝑻𝒊
∗ directly, e.g. “accelerated failure time (AFT)” models

• But more common to model the rate of occurrence of the event (e.g. the “Cox” model)

• The hazard at time t is defined as the instantaneous rate of occurrence for the event at 

time t

ℎ𝑖 𝑡 = lim
Δ𝑡→0

𝑃(𝑡 ≤ 𝑇𝑖
∗ < 𝑡 + Δ𝑡 │𝑇𝑖

∗ > 𝑡)

Δ𝑡

Modelling survival data
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The hazard, cumulative hazard & survival

• Hazard (for individual 𝑖): ℎ𝑖 𝑡

• Cumulative hazard: 𝐻𝑖 𝑡 = 𝑠=0׬
𝑡

ℎ𝑖 𝑠 𝑑𝑠

• Survival probability: 𝑆𝑖 𝑡 = 𝑃 𝑇𝑖
∗ > 𝑡 = exp −𝐻𝑖 𝑡
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The hazard, cumulative hazard & survival

• Hazard (for individual 𝑖): ℎ𝑖 𝑡

• Cumulative hazard: 𝐻𝑖 𝑡 = 𝑠=0׬
𝑡

ℎ𝑖 𝑠 𝑑𝑠

• Survival probability: 𝑆𝑖 𝑡 = 𝑃 𝑇𝑖
∗ > 𝑡 = exp −𝐻𝑖 𝑡

• The “probability integral transformation” tells us 1 − 𝐹𝑋 𝑋 = 𝑈, where 𝐹𝑋 . is the CDF of 

a continuous random variable 𝑋, and 𝑈 is a uniform random variable on the range 0 to 1
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Cumulative hazard inversion

• The result from the previous slide tells us

exp −𝐻𝑖 𝑇𝑖
𝑠 = 𝑈𝑖 ⟹ 𝑇𝑖

𝑠 = 𝐻𝑖
−1 − log 𝑈𝑖

where 

• 𝑇𝑖
𝑠 is a randomly drawn (i.e. simulated) event time for individual 𝑖

• 𝑈𝑖 is a random uniform variable on the range 0 to 1

• 𝐻𝑖 𝑡 = 𝑠=0׬
𝑡

ℎ𝑖 𝑠 𝑑𝑠 is the cumulative hazard evaluated at time 𝑡
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• Commonly known as the ‘cumulative hazard inversion method’ [1,2]

• Easy and efficient when 𝐻𝑖 𝑡 has a closed form and is invertible

[1] Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. Operations Research, 1987: 35(6); 892–894.

[2] Bender R et al. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine. 2005: 24(11); 1713–1723.
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[3] Crowther MJ, Lambert PC. Simulating Biologically Plausible Complex Survival Data. Statistics in Medicine, 2013: 32(23); 4118–4134.
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A general algorithm for simulating event times

• Crowther and Lambert [3] describe an algorithm as follows

• This method was implemented in a Stata package [4]
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Does 𝐻𝑖(𝑡) have a 
closed form 
expression?

Can you solve for 
𝑇𝑖
𝑠 analytically?

Apply the 
cumulative hazard 
inversion method

Use numerical integration to 
evaluate 𝐻𝑖(𝑡), and nest it 
within iterative root finding 

to solve for 𝑇𝑖
𝑠

Use iterative root 
finding to solve 

for 𝑇𝑖
𝑠

Yes Yes

NoNo

https://cran.r-project.org/package=simsurv


The ‘simsurv’ package

• Built around one function:  simsurv()

25



The ‘simsurv’ package

• Built around one function:  simsurv()

• Can simulate survival times from:

• Standard parametric survival distributions (exponential, Weibull, Gompertz)

• Two-component mixture survival distributions

• Covariate effects under proportional hazards

• Covariate effects under non-proportional hazards (i.e. time-dependent effects)

• Clustered survival times (e.g. shared frailty, meta-analytic models)

• Time-varying covariates

• Any user-defined hazard, log hazard, or cumulative hazard function

26



The ‘simsurv’ package

• Built around one function:  simsurv()

• Can simulate survival times from:

• Standard parametric survival distributions (exponential, Weibull, Gompertz)

• Two-component mixture survival distributions

• Covariate effects under proportional hazards

• Covariate effects under non-proportional hazards (i.e. time-dependent effects)

• Clustered survival times (e.g. shared frailty, meta-analytic models)

• Time-varying covariates

• Any user-defined hazard, log hazard, or cumulative hazard function

• Uses analytical forms where possible, otherwise

• Gauss-Kronrod quadrature to evaluate 𝐻𝑖 𝑡

• Brent’s univariate root finder to invert 𝐻𝑖 𝑡 (via the uniroot function in R)

27



The ‘simsurv’ package

• Built around one function:  simsurv()

• Can simulate survival times from:

• Standard parametric survival distributions (exponential, Weibull, Gompertz)

• Two-component mixture survival distributions

• Covariate effects under proportional hazards

• Covariate effects under non-proportional hazards (i.e. time-dependent effects)

• Clustered survival times (e.g. shared frailty, meta-analytic models)

• Time-varying covariates

• Any user-defined hazard, log hazard, or cumulative hazard function

• Uses analytical forms where possible, otherwise

• Gauss-Kronrod quadrature to evaluate 𝐻𝑖 𝑡

• Brent’s univariate root finder to invert 𝐻𝑖 𝑡 (via the uniroot function in R)

28



Example 1: Standard parametric proportional hazards model

29

General model:

ℎ𝑖 𝑡 = ℎ0 𝑡 exp 𝑿𝒊
𝑻𝜷

Example model: Weibull model with proportional hazards

ℎ𝑖 𝑡 = 𝜆 𝛾 𝑡𝛾−1 exp 𝑋𝑖𝛽

Covariates:

𝑋𝑖 ~ Bern(0.5) (e.g. a binary treatment indicator)

Parameters:

𝜆 = 0.1 (scale parameter)

𝛾 = 1.5 (shape parameter)

𝛽 = −0.5 (log hazard ratio)



Example 1: Standard parametric proportional hazards model

30

# Dimensions

N <- 1000   # total number of patients

# Define covariate data

covs <- data.frame(id = 1:N, 

trt = rbinom(N, 1, 0.5))

# Define true coefficient (log hazard ratio)

pars <- c(trt = -0.5)

# Simulate the event times

times <- simsurv(dist    = ’weibull’,

lambdas = 0.1, 

gammas  = 1.5, 

x       = covs, 

betas   = pars) 



Example 2: Two-component mixture survival distribution
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General model:

𝑆𝑖 𝑡 = 𝑝 𝑆1 𝑡 + 1 − 𝑝 𝑆2 𝑡
exp 𝑿𝒊

𝑻𝜷
where 0 < 𝑝 < 1

Example model: Weibull mixture model with proportional hazards

𝑆𝑖 𝑡 = 𝑝 exp −𝜆1𝑡
𝛾1 + 1 − 𝑝 exp −𝜆2𝑡

𝛾2 exp 𝑋𝑖𝛽

Covariates:

𝑋𝑖 ~ Bern(0.5) (e.g. a binary treatment indicator)

Parameters:

𝜆1 = 1.5,  𝜆2 = 0.1 (scale parameters)

𝛾1 = 3.0,  𝛾2 = 1.2 (shape parameters)

𝑝 = 0.2 (mixing parameter)

𝛽 = −0.5 (log hazard ratio)



Example 2: Two-component mixture survival distribution
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# Dimensions

N <- 1000   # total number of patients

# Define covariate data

covs <- data.frame(id = 1:N, 

trt = rbinom(N, 1, 0.5))

# Define true coefficient (log hazard ratio)

pars <- c(trt = -0.5)

# Simulate the event times

times <- simsurv(dist = ’weibull’,

lambdas = c(1.5, 0.1), 

gammas  = c(3.0, 1.2),

mixture = TRUE,

pmix = 0.2, 

x       = covs, 

betas   = pars) 
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General model:

ℎ𝑖 𝑡 = ℎ0 𝑡 exp 𝑿𝒊𝟏
𝑻 𝜷𝟏 + 𝑿𝒊𝟐

𝑻 𝜷𝟐𝑓(𝑡)

Example model: Weibull model with non-proportional hazards

ℎ𝑖 𝑡 = 𝜆 𝛾 𝑡𝛾−1 exp 𝛽0𝑋𝑖 + 𝛽1𝑋𝑖 log 𝑡

Covariates:

𝑋𝑖 ~ Bern(0.5) (e.g. a binary treatment indicator)

Parameters:

𝜆 = 0.1 (scale parameter)

𝛾 = 1.5 (shape parameter)

𝛽0 = −0.5 (log hazard ratio when log 𝑡 = 0)

𝛽1 = 0.4 (change in log hazard ratio per unit change in log 𝑡 ) 

Example 3: Non-proportional hazards
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Example 3: Non-proportional hazards

# Dimensions

N <- 1000   # total number of patients

# Define covariate data

covs <- data.frame(id  = 1:N,

trt = rbinom(N, 1, 0.5))

# Define true coefficients

pars     <- c(trt = -0.5) # time-fixed coefficient

pars_tde <- c(trt =  0.4) # time-varying coefficient

# Simulate the event times

times <- simsurv(dist    = 'weibull',

lambdas = 0.1,

gammas  = 1.5,

x       = covs,

betas   = pars, 

tde = pars_tde,

tdefun = 'log') 
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Example 4: Clustered survival times

General model:

ℎ𝑖𝑗 𝑡 = ℎ0 𝑡 exp 𝑿𝒊𝒋
𝑻𝜷 + 𝒁𝒊𝒋

𝑻𝒃𝒋

Example model: Weibull meta-analytic model for RCTs

ℎ𝑖𝑗 𝑡 = 𝜆 𝛾 𝑡𝛾−1 exp 𝑋𝑖𝑗 𝛽 + 𝑏𝑗

Covariates:

𝑋𝑖𝑗 ~ Bern(0.5) (e.g. a binary treatment indicator)

Parameters:

𝜆 = 0.1 (scale parameter)

𝛾 = 1.5 (shape parameter)

𝛽 = −0.5 (population average treatment effect)

𝑏𝑗 ~𝑁(0, 0.2) (study-specific deviation)  



# Dimensions

n <- 50     # number of patients per study

J <- 200    # total number of studies

N <- n * J  # total number of patients

# Define covariate data

covs <- data.frame(id    = 1:N,

study = rep(1:J, each = n),

trt = rbinom(N, 1, 0.5))

# Define true coefficients

trt_j <- -0.5 + rnorm(J, 0, 0.2)

pars  <- data.frame(trt = rep(trt_j, each = n))

# Simulate the event times

times <- simsurv(dist    = 'weibull',

lambdas = 0.1,

gammas  = 1.5,

x       = covs, 

betas   = pars) 

36

Example 4: Clustered survival times
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• The method only requires that we can specify the hazard for the data generating model
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Summary

• The method only requires that we can specify the hazard for the data generating model

• I showed examples for some common scenarios, for which ‘simsurv’ has convenient 

arguments the user can specify

• I did not demonstrate “user-defined” hazard functions, which can allow even more flexibility

• e.g. time-varying covariates, joint longitudinal-survival models, Royston-Parmar models, etc

• Computation times are “relatively” fast, e.g.

• 10,000 event times under a standard Weibull distribution (< 1 sec)

• 10,000 event times under a user-defined hazard function (~10 sec)

• Future work: competing risks, vectorisation of ‘uniroot’
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Thank you!
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