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What is survival analysis?

« The analysis of a variable that corresponds to the time from a defined baseline (e.g.
diagnosis of a disease) until occurrence of an event of interest (e.g. heart failure).

B Uversny ; V:CB:ostat



What is survival analysis?

« The analysis of a variable that corresponds to the time from a defined baseline (e.g.
diagnosis of a disease) until occurrence of an event of interest (e.g. heart failure).

* Also known as:
* Time-to-event analysis
* Duration analysis (economics)
 Reliability analysis (engineering)

* Event history analysis (sociology)
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What is survival analysis?

« The analysis of a variable that corresponds to the time from a defined baseline (e.g.
diagnosis of a disease) until occurrence of an event of interest (e.g. heart failure).

« Also known as:
* Time-to-event analysis
* Duration analysis (economics)
 Reliability analysis (engineering)
* Event history analysis (sociology)
» The context for this talk will be health research

* Each observational unit will be an “individual” (e.g. a patient)
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Why simulate survival data?

» To evaluate the performance of new or existing statistical methods for survival analysis
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Why simulate survival data?

» To evaluate the performance of new or existing statistical methods for survival analysis

» To calculate statistical power, e.g. in planning clinical trials
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Why simulate survival data?

» To evaluate the performance of new or existing statistical methods for survival analysis
» To calculate statistical power, e.g. in planning clinical trials

« To calculate uncertainty in model predictions, e.g. transition probabilities in multistate models
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Why simulate survival data?

To evaluate the performance of new or existing statistical methods for survival analysis

To calculate statistical power, e.g. in planning clinical trials

To calculate uncertainty in model predictions, e.g. transition probabilities in multistate models

...others?
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Modelling survival data

« LetT; denote the “true” event time for individual i

* In practice, T;" may not be observed due to right censoring, e.g. the study ending before
an individual experiences the event
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Modelling survival data
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« Possible to model T; directly, e.g. “accelerated failure time (AFT)” models
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Modelling survival data

« Let T;" denote the “true” event time for individual i

* In practice, T;" may not be observed due to right censoring, e.g. the study ending before
an individual experiences the event

« Possible to model T; directly, e.g. “accelerated failure time (AFT)” models
« But more common to model the rate of occurrence of the event (e.g. the “Cox” model)

The hazard at time t is defined as the instantaneous rate of occurrence for the event at
time t

P(t<T <t+At |T >t
hi(t) = 11m ( : | L )
At—0 At
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The hazard, cumulative hazard & survival

» Hazard (for individual i): h;(t)
* Cumulative hazard: H;(t) = fstzo h;(s)ds

« Survival probability: S;(t) = P(T} > t) = exp(—H;(t))
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The hazard, cumulative hazard & survival

» Hazard (for individual i): h;(t)

« Cumulative hazard: H;(t) = fstzo h;(s)ds

« Survival probability: = exp(—H;(t))

This is the complement of the CDF for the distribution of event times
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The hazard, cumulative hazard & survival

» Hazard (for individual i): h;(t)

« Cumulative hazard: H;(t) = fst:O h;(s)ds

« Survival probability: = exp(—H;(t))

This is the complement of the CDF for the distribution of event times

» The “probability integral transformation” tells us 1 — Fx(X) = U, where Fx(.) is the CDF of

a continuous random variable X, and U is a uniform random variable on the range O to 1
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Cumulative hazard inversion

* The result from the previous slide tells us
exp(—H;(T)) =U; = T =H;'(~log(Uy))

where
« T; is arandomly drawn (i.e. simulated) event time for individual i

* U;is arandom uniform variable on the range O to 1

* H;(t) = fst=0 h;(s) ds is the cumulative hazard evaluated at time t

:



Cumulative hazard inversion

* The result from the previous slide tells us
exp(—H;(T{)) =U; = T7 = H;'(—log(Uy)

where
« T; is arandomly drawn (i.e. simulated) event time for individual i

* U;is arandom uniform variable on the range O to 1

* H;(t) = fst=0 h;(s) ds is the cumulative hazard evaluated at time t
« Commonly known as the ‘cumulative hazard inversion method’ [1,2]

» Easy and efficient when H;(t) has a closed form and is invertible

[1] Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. Operations Research, 1987: 35(6); 892-894.
[2] Bender R et al. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine. 2005: 24(11); 1713-1723.
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Cumulative hazard inversion

* The result from the previous slide tells us
exp(—H;(T{)) =U; = T7 = H;'(—log(Uy)

where
« T; is arandomly drawn (i.e. simulated) event time for individual i

* U;is arandom uniform variable on the range O to 1

* H;(t) = fst=0 h;(s) ds is the cumulative hazard evaluated at time t
« Commonly known as the ‘cumulative hazard inversion method’ [1,2]
» Easy and efficient when H;(t) has a closed form and is invertible

» But for complex specifications of h;(t):

» H;(t) may not have a closed form - numerical integration (quadrature)

* H;(t) may not be invertible

[1] Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. Operations Research, 1987: 35(6); 892-894. V CB t t
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Cumulative hazard inversion

* The result from the previous slide tells us
exp(—H;(T{)) =U; = T7 = H;'(—log(Uy)

where
« T; is arandomly drawn (i.e. simulated) event time for individual i

* U;is arandom uniform variable on the range O to 1

* H;(t) = fst=0 h;(s) ds is the cumulative hazard evaluated at time t
« Commonly known as the ‘cumulative hazard inversion method’ [1,2]
» Easy and efficient when H;(t) has a closed form and is invertible

» But for complex specifications of h;(t):

» H;(t) may not have a closed form - numerical integration (quadrature)

* H;(t) may not be invertible - iterative univariate root finding

[1] Leemis LM. Variate Generation for Accelerated Life and Proportional Hazards Models. Operations Research, 1987: 35(6); 892-894. V CB t t
[2] Bender R et al. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine. 2005: 24(11); 1713-1723. OS a



A general algorithm for simulating event times

» Crowther and Lambert [3] describe an algorithm as follows

Does H;(t) have a Yes Can you solve for Yes Apply the
closed form TS analytically? cumulative hazard
expression? ' inversion method

No No
A 4 A

Use numerical integration to
evaluate H;(t), and nest it
within iterative root finding

to solve for T}

Use iterative root
finding to solve
for T}

[3] Crowther MJ, Lambert PC. Simulating Biologically Plausible Complex Survival Data. Statistics in Medicine, 2013: 32(23); 4118-4134.

[4] Crowther MJ, Lambert PC. Simulating Complex Survival Data. The Stata Journal, 2012: 12(4); 674—687. V CB t t
[5] Brilleman S. (2018) simsurv: Simulate Survival Data. R package version 0.2.2. https://CRAN.R-project.org/package=simsurv OS a
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A general algorithm for simulating event times

» Crowther and Lambert [3] describe an algorithm as follows

Does H;(t) have a Yes Can you solve for Yes Apply the
closed form TS analytically? cumulative hazard
expression? ' inversion method

No No

Y

Use numerical integration to
evaluate H;(t), and nest it
within iterative root finding

to solve for T}

Use iterative root
finding to solve
for T}

« This method was implemented in a Stata package [4]

* Now also implemented in R as part of the ‘simsurv’ package [J]

[3] Crowther MJ, Lambert PC. Simulating Biologically Plausible Complex Survival Data. Statistics in Medicine, 2013: 32(23); 4118-4134.
[4] Crowther MJ, Lambert PC. Simulating Complex Survival Data. The Stata Journal, 2012: 12(4); 674—687.
[5] Brilleman S. (2018) simsurv: Simulate Survival Data. R package version 0.2.2. https://CRAN.R-project.org/package=simsurv
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The ‘simsurv’ package

 Built around one function: simsurv()
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The ‘simsurv’ package

 Built around one function: simsurv()

 Can simulate survival times from:
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Standard parametric survival distributions (exponential, Weibull, Gompertz)
Two-component mixture survival distributions

Covariate effects under proportional hazards

Covariate effects under non-proportional hazards (i.e. time-dependent effects)
Clustered survival times (e.g. shared frailty, meta-analytic models)
Time-varying covariates

Any user-defined hazard, log hazard, or cumulative hazard function
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The ‘simsurv’ package

 Built around one function: simsurv()

« Can simulate survival times from:
» Standard parametric survival distributions (exponential, Weibull, Gompertz)
* Two-component mixture survival distributions
* Covariate effects under proportional hazards
* Covariate effects under non-proportional hazards (i.e. time-dependent effects)
e Clustered survival times (e.g. shared frailty, meta-analytic models)
* Time-varying covariates

* Any user-defined hazard, log hazard, or cumulative hazard function

« Uses analytical forms where possible, otherwise
* Gauss-Kronrod quadrature to evaluate H;(t)

 Brent’s univariate root finder to invert H;(t) (via the uniroot function in R)

Uy 27 V:CB:ostat




The ‘simsurv’ package

 Built around one function: simsurv()

 Can simulate survival times from:

» Standard parametric survival distributions (exponential, Weibull, Gompertz)

* Two-component mixture survival distributions

* Covariate effects under proportional hazards

* Covariate effects under non-proportional hazards (i.e. time-dependent effects)

e Clustered survival times (e.g. shared frailty, meta-analytic models)

* Time-varying covariates

* Any user-defined hazard, log hazard, or cumulative hazard function

« Uses analytical forms where possible, otherwise
* Gauss-Kronrod quadrature to evaluate H;(t)

 Brent’s univariate root finder to invert H;(t) (via the uniroot function in R)
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Example 1: Standard parametric proportional hazards model

0.51 General model:

Control — — = Treatment

hi(t) = ho(t) exp(X] B)
0.41
Example model: Weibull model with proportional hazards

hi(t) = Ay t" Texp(X; )

o
w
1

Covariates:

Hazard rate

o
N

X; ~Bern(0.5) (e.g. a binary treatment indicator)

0.1- Parameters:
A=0.1 (scale parameter)
oL | | | | | y=1.5 (shape parameter)
0 1 2 3 4 5
Time g =-0.5 (log hazard ratio)

-
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Example 1: Standard parametric proportional hazards model

0.57

0.4+

Hazard rate
(@]
o

0.11

0.0+

niversity

o
w
1

Control — — = Treatment

# Dimensions
N <- 1000

# Define covariate data

# total number of patients

covs <- data.frame(id = 1:N,
trt = rbinom(N, 1, 0.5))

# Define true coefficient
pars <- c(trt = -0.5)

# Simulate the event times
times <- simsurv(dist =
lambdas =
gammas =
x =

betas =

30

(log hazard ratio)

'weibull’,
0.1,

1.5,
covs,

pars)
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Example 2: Two-component mixture survival distribution

0.57

Control — — = Treatment

0.4+

o
w
1

Hazard rate
(@]
o

0.11

0.0+

niversity

General model:

S0 = (P10 + (A = p) S,0) X where 0 <p < 1

Example model: Weibull mixture model with proportional hazards

S;(t) = (pexp(=A;t"1) + (1 — p) exp(—2,t72))exPXiB)

Covariates:
X; ~ Bern(0.5)

Parameters:
/11 == 15, }.2 == 01

Y1 = 30, Y2 = 1.2
=0.2

p
B =-05

31

(e.g. a binary treatment indicator)

(scale parameters)
(shape parameters)
(mixing parameter)

(log hazard ratio)
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Example 2: Two-component mixture survival distribution

0.57

0.4+

Hazard rate
(@]
o

0.11

0.0+

niversity

o
w
1

Control — — = Treatment

32

# Dimensions
N <- 1000 # total number of patients
# Define covariate data
covs <- data.frame(id = 1:N,
trt = rbinom(N, 1, 0.5))

# Define true coefficient (log hazard ratio)
pars <- c(trt = -0.5)

# Simulate the event times

times <- simsurv(dist = '"weibull’,
lambdas = ¢(1.5, 0.1),
gammas = c(3.0, 1.2),
mixture = TRUE,

pmix =0.2,
X = covs,
betas = pars)



Example 3: Non-proportional hazards

05 General model:

Control — — = Treatment

hi(t) = ho(t) eXp(XiT1ﬂ1 + XiTzﬁzf(t))

0.4
Example model: Weibull model with non-proportional hazards

% 0.3 hi(t) = Ay t""Lexp(BoX; + B1X; log(t))
g Covariates:
% 0.2 X; ~Bern(0.5) (e.g. a binary treatment indicator)
Parameters:
. 1=0.1 (scale parameter)
0.0- y =15 (shape parameter)
0 1' 2 Time 3 4 5 Bo = —0.5 (log hazard ratio when log(t) = 0)

B, = 0.4 (change in log hazard ratio per unit change in log(t))

B Uversny 53 V:CB:ostat
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Example 3: Non-proportional hazards

051 # Dimensions
- Control — — — Treatment N <= 1000 # total number of patients
0.4- # Define covariate data
covs <- data.frame(id = 1:N,
trt = rbinom(N, 1, 0.5))
ICIRY
E0.3
© # Define true coefficients
g pars <- c(trt = -0.5) # time-fixed coefficient
T 027 pars_tde <- c(trt = 0.4) # time-varying coefficient
0.1- # Simulate the event times
- times <- simsurv (dist = 'weibull',
lambdas = 0.1,
004 gammas = 1.5,
5 ' 5 5 4 5 x = covs,
Time betas = pars,
tde = pars_tde,
tdefun = 'log')

-
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Example 4: Clustered survival times

05 General model:
Control = = = Treatment r r
0.41
Example model: Weibull meta-analytic model for RCTs
(O] —
& 0.3 hij(t) = 1y t¥'exp (Xij(:3+bj))
°
N Covariates:
£0.2
X;j ~ Bern(0.5) (e.g. a binary treatment indicator)
0.11 Parameters:
A=0.1 (scale parameter)
0.0
: 1 ; I : : y =15 (shape parameter)
Time B =—-0.5 (population average treatment effect)
b; ~ N(0,0.2) (study-specific deviation)

-
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Example 4: Clustered survival times

0.57

0.4+

Hazard rate
(@]
w

o
N
1

0.11

0.0+

Control

= =— = Treatment

niversity

36

# Dimensions

n <- 50 # number of patients per study
J <= 200 # total number of studies

N <-n * J # total number of patients

# Define covariate data

covs <- data.frame (id = 1:N,

study = rep(1:J, each =

trt = rbinom(N, 1, O.
# Define true coefficients
trt_ j <- -0.5 + rnorm(J, 0, 0.2)

pars <- data.frame(trt = rep(trt_j, each

# Simulate the event times

times <- simsurv(dist = 'weibull',
lambdas = 0.1,
gammas = 1.5,
X = covs,
betas = pars)

n),
5))

= n))



Summary

 The method only requires that we can specify the hazard for the data generating model
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Summary

 The method only requires that we can specify the hazard for the data generating model

» | showed examples for some common scenarios, for which ‘simsurv’ has convenient
arguments the user can specify
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Summary

 The method only requires that we can specify the hazard for the data generating model

» | showed examples for some common scenarios, for which ‘simsurv’ has convenient
arguments the user can specify

| did not demonstrate “user-defined” hazard functions, which can allow even more flexibility

* e.g. time-varying covariates, joint longitudinal-survival models, Royston-Parmar models, etc
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Summary

The method only requires that we can specify the hazard for the data generating model

| showed examples for some common scenarios, for which ‘simsurv’ has convenient
arguments the user can specify

| did not demonstrate “user-defined” hazard functions, which can allow even more flexibility

* e.g. time-varying covariates, joint longitudinal-survival models, Royston-Parmar models, etc

Computation times are “relatively” fast, e.g.
* 10,000 event times under a standard Weibull distribution (< 1 sec)

* 10,000 event times under a user-defined hazard function (~10 sec)

D
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Summary

The method only requires that we can specify the hazard for the data generating model

| showed examples for some common scenarios, for which ‘simsurv’ has convenient
arguments the user can specify

| did not demonstrate “user-defined” hazard functions, which can allow even more flexibility

* e.g. time-varying covariates, joint longitudinal-survival models, Royston-Parmar models, etc

Computation times are “relatively” fast, e.g.
* 10,000 event times under a standard Weibull distribution (< 1 sec)

* 10,000 event times under a user-defined hazard function (~10 sec)

Future work: competing risks, vectorisation of ‘uniroot’

D
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Thank you!
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