Joint longitudinal and time-to-event models via Stan

Sam Brilleman^{1,2}, Michael J. Crowther³, Margarita Moreno-Betancur^{2,4,5},

Jacqueline Buros Novik⁶, Rory Wolfe^{1,2}

StanCon 2018

Pacific Grove, California, USA

10-12th January 2018

¹ Monash University, Melbourne, Australia

² Victorian Centre for Biostatistics (ViCBiostat)

³ University of Leicester, Leicester, UK

⁴ Murdoch Childrens Research Institute, Melbourne, Australia

⁵ University of Melbourne, Melbourne, Australia

⁶ Icahn School of Medicine at Mount Sinai, New York, US

Outline

• Context and background

• Joint model formulation

• Association structures

• Software implementation via Stan / rstanarm

• Example application

Context

- Suppose we observe repeated measurements of a clinical biomarker on a group of individuals
- May be clinical trial patients or some observational cohort

Collection of **serum bilirubin** and **serum albumin** from patients with liver disease

Context

- Suppose we observe repeated measurements of a clinical biomarker on a group of individuals
- May be clinical trial patients or some observational cohort

• In addition we observe the **time to some event** endpoint, e.g. death

Longitudinal and time-to-event data

What is "joint modelling" of longitudinal and time-to-event data?

- Treats both the longitudinal biomarker(s) and the event as outcome data
- Each outcome is modelled using a distinct regression submodel:
 - A (multivariate) **mixed effects model** for the longitudinal outcome(s)
 - A proportional hazards model for the time-to-event outcome
- The regression submodels are linked through shared individual-specific parameters and estimated simultaneously under a joint likelihood function

Why use "joint modelling"?

- Want to understand whether (some function of) the longitudinal outcome is associated with the risk of the event (i.e. epidemiological questions)
 - Joint models offer advantages over just using the biomarker as a timevarying covariate (described in the next slide!)
- Want to develop a dynamic prognostic model, where predictions of event risk can be updated as new longitudinal biomarker measurements become available (i.e. clinical risk prediction)
- Possibly other reasons:
 - e.g. adjusting for informative dropout, separating out "direct" and "indirect" effects of treatment

Joint model formulation

Longitudinal submodel

 $\begin{array}{l} y_{ijm}(t) \text{ is the value at time } t \text{ of the} \\ m^{\text{th}} \text{ longitudinal marker } (m=1,\ldots,M) \\ \text{for the } i^{\text{th}} \text{ individual } (i=1,\ldots,N) \\ \text{at the } j^{\text{th}} \text{ time point } (j=1,\ldots,n_{im}) \\ T_i^* \text{ is "true" event time, } C_i \text{ is the censoring time} \\ T_i = \min(T_i^*,C_i) \text{ and } d_i = I(T_i^* \leq C_i) \end{array}$

 $y_{ijm}(t)$ follows a distribution in the exponential family with expected value $\mu_{ijm}(t)$ and

$$\eta_{ijm}(t) = g_m \left(\mu_{ijm}(t) \right) = \mathbf{x}_{ijm}^T(t) \mathbf{\beta}_m + \mathbf{z}_{ijm}^T(t) \mathbf{b}_{im}$$
$$\begin{bmatrix} \mathbf{b}_{i1} \\ \vdots \\ \mathbf{b}_{iM} \end{bmatrix} = \mathbf{b}_i \sim N(0, \mathbf{\Sigma})$$

Event submodel

$$h_i(t) = h_0(t) \exp\left(\mathbf{w}_i^T(t)\mathbf{\gamma} + \sum_{m=1}^M \alpha_m \,\mu_{im}(t)\right)$$

Joint model formulation

Longitudinal submodel

 $\begin{array}{l} y_{ijm}(t) \text{ is the value at time } t \text{ of the} \\ m^{\text{th}} \text{ longitudinal marker } (m=1,\ldots,M) \\ \text{for the } i^{\text{th}} \text{ individual } (i=1,\ldots,N) \\ \text{at the } j^{\text{th}} \text{ time point } (j=1,\ldots,n_{im}) \\ T_i^* \text{ is "true" event time, } C_i \text{ is the censoring time} \\ T_i = \min(T_i^*,C_i) \text{ and } d_i = I(T_i^* \leq C_i) \end{array}$

 $y_{ijm}(t)$ follows a distribution in the exponential family with expected value $\mu_{ijm}(t)$ and

$$\eta_{ijm}(t) = g_m \left(\mu_{ijm}(t) \right) = \mathbf{x}_{ijm}^T(t) \mathbf{\beta}_m + \mathbf{z}_{ijm}^T(t) \mathbf{b}_{im}$$
$$\begin{bmatrix} \mathbf{b}_{i1} \\ \vdots \\ \mathbf{b}_{iM} \end{bmatrix} = \mathbf{b}_i \sim N(0, \mathbf{\Sigma})$$

Event submodel

$$h_i(t) = h_0(t) \exp\left(\mathbf{w}_i^T(t)\mathbf{\gamma} + \sum_{m=1}^M \alpha_m \,\mu_{im}(t)\right)$$

Known as a current value "association structure"

Joint model formulation

Longitudinal submodel

 $y_{ijm}(t)$ is the value at time t of the m^{th} longitudinal marker (m = 1, ..., M) for the *i*th individual (i = 1, ..., N) at the jth time point ($j = 1, ..., n_{im}$) T_i^* is "true" event time, C_i is the censoring time $T_i = \min(T_i^*, C_i)$ and $d_i = I(T_i^* \le C_i)$

 $y_{ijm}(t)$ follows a distribution in the exponential family with expected value $\mu_{ijm}(t)$ and

$$\eta_{ijm}(t) = g_m \left(\mu_{ijm}(t)\right) = \mathbf{x}_{ijm}^T(t) \mathbf{\beta}_m + \mathbf{z}_{ijm}^T(t) \mathbf{b}_{im}$$

$$\begin{bmatrix} \mathbf{b}_{i1} \\ \vdots \\ \mathbf{b}_{iM} \end{bmatrix} = \mathbf{b}_i \sim N(0, \mathbf{\Sigma})$$
Event submodel
$$h_i(t) = h_0(t) \exp\left(\mathbf{w}_i^T(t)\mathbf{\gamma} + \sum_{m=1}^M \alpha_m \, \mu_{im}(t)\right)$$

$$\begin{bmatrix} \mathbf{w}_i^T(t)\mathbf{\gamma} + \sum_{m=1}^M \alpha_m \, \mu_{im}(t) \end{bmatrix}$$

/

Known as a current value "association structure"

Ι

Association structures

• A more **general form** for the event submodel is

$$h_i(t) = h_0(t) \exp\left(\boldsymbol{w_i^T(t)\gamma} + \sum_{m=1}^M \sum_{q=1}^{Q_m} \alpha_{mq} f_{mq}(\boldsymbol{\beta_m}, \boldsymbol{b_{im}}; t)\right)$$

Association structures

• A more general form for the event submodel is

$$h_i(t) = h_0(t) \exp\left(\boldsymbol{w}_i^T(t)\boldsymbol{\gamma} + \sum_{m=1}^M \sum_{q=1}^{Q_m} \alpha_{mq} f_{mq}(\boldsymbol{\beta}_m, \boldsymbol{b}_{im}; t)\right)$$

 This posits an association between the log hazard of the event and any function of the longitudinal submodel parameters

Association structures

• A more general form for the event submodel is

$$h_i(t) = h_0(t) \exp\left(\boldsymbol{w}_i^T(t)\boldsymbol{\gamma} + \sum_{m=1}^M \sum_{q=1}^{Q_m} \alpha_{mq} f_{mq}(\boldsymbol{\beta}_m, \boldsymbol{b}_{im}; t)\right)$$

• This posits an association between the log hazard of the event and any function of the longitudinal submodel parameters; for example, defining $f_{mq}(.)$ as:

 $\eta_{im}(t) \longrightarrow$ Linear predictor (or expected value of the biomarker) at time t $\frac{d\eta_{im}(t)}{dt} \longrightarrow$ Rate of change in the linear predictor (or biomarker) at time t $\int_{0}^{t} \eta_{im}(s) \, ds \longrightarrow$ Area under linear predictor (or biomarker trajectory), up to time t

 $\eta_{im}(t-u) \longrightarrow$ Lagged value (for some lag time u)

Joint modelling software

- An abundance of **methodological** developments in joint modelling
- But not all methods have been translated into "user-friendly" software
- Well established software for one longitudinal outcome
 - e.g. stjm (Stata); joineR, JM, JMbayes, frailtypack (R); JMFit (SAS)
- Recent software developments for **multiple longitudinal outcomes**
 - R packages: **rstanarm**, joineRML, JMbayes, survtd
- Each package has its strengths and limitations
 - e.g. (non-)normally distributed longitudinal outcomes, selected association structures, speed, etc.

Joint modelling software

- An abundance of **methodological** developments in joint modelling
- But not all methods have been translated into "user-friendly" software
- Well established software for one longitudinal outcome
 - e.g. stjm (Stata); joineR, JM, JMbayes, frailtypack (R); JMFit (SAS)
- Recent software developments for **multiple longitudinal outcomes**
 - R packages: **rstanarm**, joineRML, JMbayes, survtd
- Each package has its strengths and limitations
 - e.g. (non-)normally distributed longitudinal outcomes, selected association structures, speed, etc.

Bayesian joint models via Stan

- Included in **rstanarm** version ≥ 2.17.2
 - <u>https://cran.r-project.org/package=rstanarm</u>
 - <u>https://github.com/stan-dev/rstanarm</u>
- Can specify multiple longitudinal outcomes
- Allows for multilevel clustering in longitudinal submodels (e.g. time < patients < clinics)
- Variety of **families** (and link functions) for the longitudinal outcomes
 - e.g. normal, binomial, Poisson, negative binomial, Gamma, inverse Gaussian
- Variety of association structures
- Variety of prior distributions
 - Regression coefficients: normal, student t, Cauchy, shrinkage priors (horseshoe, lasso)
- Posterior predictions including "dynamic predictions" of event outcome
- Baseline hazard
 - B-splines regression, Weibull, piecewise constant

Application to the PBC dataset

- Data contains 312 **liver disease patients** who participated in a clinical trial at the Mayo Clinic between 1974 and 1984
- Secondary analysis to explore whether log serum bilirubin and serum albumin are associated with risk of mortality
- Longitudinal submodel:
 - Linear mixed model for each biomarker
 - w/ patient-specific intercept and linear slope (i.e. random effects)
- Event submodel:
 - Gender included as a baseline covariate
 - Current value association structure (i.e. expected value of each biomarker)
 - B-splines baseline hazard

```
> fit1 <- stan_jm(
> formulaLong = list(
> logBili ~ year + (year | id),
> albumin ~ year + (year | id)),
> formulaEvent = Surv(futimeYears, death) ~ sex,
> dataLong = pbcLong, dataEvent = pbcSurv,
> time_var = "year", assoc = "etavalue", basehaz = "bs")
```



```
> fit1 <- stan_jm(
> formulaLong = list(
> logBili ~ year + (year | id),
> albumin ~ year + (year | id)),
> formulaEvent = Surv(futimeYears, death) ~ sex,
> dataLong = pbcLong, dataEvent = pbcSurv,
> time_var = "year", assoc = "etavalue", basehaz = "bs")
```

> print(fit1)

```
> summary(fit1, pars = "assoc")
```

```
> p1 <- posterior_traj(fit1, m = 1, ids = 7:8, extrapolate = TRUE)
> p2 <- posterior_traj(fit1, m = 2, ids = 7:8, extrapolate = TRUE)
> p3 <- posterior_survfit(fit1, ids = 7:8)
> pp1 <- plot(p1, vline = TRUE, plot_observed = TRUE)
> pp2 <- plot(p2, vline = TRUE, plot_observed = TRUE)
> plot_stack_jm(yplot = list(pp1, pp2), survplot = plot(p3))
```


Acknowledgements

- StanCon committee and sponsor for support via the Student Scholarship
- Eric Novik and Daniel Lee at Generable, for both academic support and financial support to get me here! ⁽ⁱ⁾
- Ben Goodrich and Jonah Gabry (maintainers of **rstanarm**)
- Collaborators on motivating projects: Nidal Al-Huniti, James Dunyak and Robert Fox at AstraZeneca; Serigne Lo at Melanoma Institute Australia
- My PhD supervisors: Rory Wolfe, Margarita Moreno-Betancur, Michael Crowther
- My PhD funders: Australian National Health and Medical Research Council (NHMRC) and Victorian Centre for Biostatistics (ViCBiostat)

References

- <u>http://mc-stan.org/users/interfaces/rstanarm.html</u>
- <u>https://github.com/stan-dev/rstanarm</u>

Key Dates

Registration opens August 2017

Abstract submission opens October 2017

Abstract submission closes March 2018

Early bird registration deadline May 2018

Joint International Society for Clinical Biostatistics and Australian Statistical Conference 2018

HOSTED BY:

Statistical Society of Australia

SCB ASC 2018 Conference Managers: Arinex Pty Ltd 91–97 Islington St, Collingwood, VIC 3066, Australia Ph: +61 3 8888 9500 Joint International Society for Clinical Biostatistics and Australian Statistical Conference 2018

Confirmed Keynote Speakers:

Chris Holmes University of Oxford

Louise Ryan University of Technology, Sydney

Susan Murphy University of Michigan

Thomas Lumley University of Auckland

web:) www.iscbasc2018.com

email:) iscbasc2018@arinex.com.au