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Context

e Suppose we observe repeated measurements of a clinical biomarker on
a group of individuals

* May be clinical trial patients or some observational cohort

Collection of serum bilirubin and serum albumin
from patients with liver disease




Context

e Suppose we observe repeated measurements of a clinical biomarker on
a group of individuals

* May be clinical trial patients or some observational cohort

Collection of serum bilirubin and serum albumin
from patients with liver disease

* In addition we observe the time to some event endpoint, e.g. death



Longitudinal and time-to-event data
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What is “joint modelling” of
longitudinal and time-to-event data?

* Treats both the longitudinal biomarker(s) and the event as outcome data

* Each outcome is modelled using a distinct regression submodel:
e A (multivariate) mixed effects model for the longitudinal outcome(s)
* A proportional hazards model for the time-to-event outcome

* The regression submodels are linked through shared individual-specific

parameters and estimated simultaneously under a joint likelihood

function



Why use “joint modelling”?

* Want to understand whether (some function of) the longitudinal
outcome is associated with the risk of the event (i.e. epidemiological
guestions)

* Joint models offer advantages over just using the biomarker as a time-
varying covariate (described in the next slide!)

* Want to develop a dynamic prognostic model, where predictions of
event risk can be updated as new longitudinal biomarker measurements
become available (i.e. clinical risk prediction)

* Possibly other reasons:

* e.g. adjusting for informative dropout, separating out “direct” and
“indirect” effects of treatment



Joint model formulation

* Longitudinal submodel

Yijm(t) is the value at time t of the
mt longitudinal marker (m = 1, ..., M)
for the i M individual (i = 1, ..., N)
at the jth time point (j = 1, ..., n;;;,)
T/ is “true” event time, C; is the censoring time
Ti = min(Tl-*,Ci) and di = I(Tl* < CL)

yijm(t) follows a distribution in the exponential family with expected value p; j,, (t) and

Nijm(®) = G (Bijm () = (OB + 25 (O) i

[ } b~ NO.5)

e Event submodel

M
hi(6) = ho(6) exp [ WOV + )t i (6)
m=1




Yijm(t) is the value at time t of the
. . mt longitudinal marker (m = 1, ..., M)
Joint model formulation for the i " individual (i = 1,..., N
at the jth time point (j = 1, ..., n;;;,)
T/ is “true” event time, C; is the censoring time
* Longitudinal submodel T; = min(T{, C;) and d; = I(T{" < C})

yijm(t) follows a distribution in the exponential family with expected value p; j,, (t) and
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e Event submodel

hi(t) = ho(t) exp | wi (O)y

e Known as a current value “association structure”



Joint model formulation

* Longitudinal submodel

Yijm(t) is the value at time t of the
mt longitudinal marker (m = 1, ..., M)
for the i M individual (i = 1, ..., N)
at the jth time point (j = 1, ..., n;;;,)
T/ is “true” event time, C; is the censoring time
Ti = min(Tl-*,Ci) and di = I(Tl* < CL)

yijm(t) follows a distribution in the exponential family with expected value p; j,, (t) and

Nijm(®) = G (Bijm () = (OB + 25 (O) i

[ } b~ NO.5)

e Event submodel

M
hi(6) = ho(6) exp | WOV + )t 1 (0)
m=1

Yijm(t) is both:
- error-prone
- measured at discrete times

Whereas u;,,, (t) is both:
- error-free
- modelled in continuous time

Therefore less bias in a,,, compared
with a time-dependent Cox model.

e Known as a current value “association structure”



Association structures

* A more general form for the event submodel is

M  Qm
h;(t) = hy (t) exp (Wf(t))’ + z Z amquq (Bm bim; t))

m=1q=1



Association structures

* A more general form for the event submodel is
M Qm
hi(t) = hy (t) exp (Wf(t))’ + z Z amquq (B Dim; t))
m=1q=1

* This posits an association between the log hazard of the event and any function
of the longitudinal submodel parameters



Association structures

* A more general form for the event submodel is

M Qm

h;(t) = hy (t) exp W{(t)y + z z amquq (B bim; t)

m=1q=1

* This posits an association between the log hazard of the event and any function

of the longitudinal submodel parameters; for example, defining fp,,(.) as:
Nim() — Linear predictor (or expected value of the biomarker) at time ¢t

dni;”(t) —> Rate of change in the linear predictor (or biomarker) at time t
t

t
f Nim(s) ds —> Area under linear predictor (or biomarker trajectory), up to time t
0

Nim(t —u) — Lagged value (for some lag time u)



Joint modelling software

An abundance of methodological developments in joint modelling

But not all methods have been translated into “user-friendly” software

Well established software for one longitudinal outcome

e e.g.stjm (Stata); joineR, JM, JMbayes, frailtypack (R); JMFit (SAS)

Recent software developments for multiple longitudinal outcomes

* R packages: rstanarm, joineRML, JMbayes, survtd

Each package has its strengths and limitations

* e.g. (non-)normally distributed longitudinal outcomes, selected association
structures, speed, etc.



Joint modelling software

An abundance of methodological developments in joint modelling

But not all methods have been translated into “user-friendly” software

Well established software for one longitudinal outcome

e e.g.stjm (Stata); joineR, JM, JMbayes, frailtypack (R); JMFit (SAS)

Recent software developments for multiple longitudinal outcomes

* R packages: rstanarm,|joineRML, JMbayes, survtd

Each package has its strengths and limitations

* e.g. (non-)normally distributed longitudinal outcomes, selected association
structures, speed, etc.



Bayesian joint models via Stan

Included in rstanarm version = 2.17.2

* https://cran.r-project.org/package=rstanarm

* https://github.com/stan-dev/rstanarm

Can specify multiple longitudinal outcomes

Stan

C++ library
for
full Bayesian
inference

—>

rstan

R
interface
for
Stan

-—>

rstanarm

R package
for
Applied
Regression
Modelling

Allows for multilevel clustering in longitudinal submodels (e.g. time < patients < clinics)

Variety of families (and link functions) for the longitudinal outcomes

* e.g. normal, binomial, Poisson, negative binomial, Gamma, inverse Gaussian

Variety of association structures

Variety of prior distributions

* Regression coefficients: normal, student t, Cauchy, shrinkage priors (horseshoe, lasso)

Posterior predictions — including “dynamic predictions” of event outcome

Baseline hazard

* B-splines regression, Weibull, piecewise constant

16



https://cran.r-project.org/package=rstanarm
https://github.com/stan-dev/rstanarm

Application to the PBC dataset

Data contains 312 liver disease patients who participated in a clinical
trial at the Mayo Clinic between 1974 and 1984

Secondary analysis to explore whether log serum bilirubin and serum
albumin are associated with risk of mortality

Longitudinal submodel:
* Linear mixed model for each biomarker

* w/ patient-specific intercept and linear slope (i.e. random effects)

Event submodel:
* Gender included as a baseline covariate
e Current value association structure (i.e. expected value of each biomarker)

* B-splines baseline hazard



>fitl <- stan jm(

datalLong = pbclLong, dataEvent = pbcSurv,
time var = "year", assoc = "etavalue", basehaz = "bs")

> formulalong = list(

> logBili ~ year + (year | id),

> albumin ~ year + (year | id)),

> formulaEvent = Surv (futimeYears, death) ~ sex,
>

>




>print (fitl)
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stan jm

formula (Longl) logBili ~ year + (year | id)
family (Longl): gaussian [identity]

formula (Long2) albumin ~ year + (year | id)
family (Long2): gaussian [identity]

formula (Event): Surv (futimeYears, death) ~ sex
baseline hazard: Dbs

assoc: etavalue (Longl), etavalue (Long2)

Longitudinal submodel 1: logBili
Median MAD SD

(Intercept) 0.678 0.192

year 0.227 0.042

sigma 0.354 0.017

Longitudinal submodel 2: albumin
Median MAD SD

(Intercept) 3.520 0.082

year -0.161 0.025

sigma 0.290 0.014

Event submodel:

Median MAD SD
(Intercept) 7.054 2.870
sexf -0.182 0.674
Longl |etavalue 0.745 0.281
Long2 |etavalue -3.141 0.857
Group-level error terms:
Groups Name Std.Dev.

id Longl| (Intercept) 1.2425
Longl | year 0.1937
Long?2| (Intercept) 0.5029
Long2 | year 0.1022

exp (Median)

1157.757
0.834
2.105
0.043

Corr

0.50
-0.64 -0.51
-0.59 -0.81

0.
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A one unit increase in log
serum bilirubin is associated
with an estimated 2.1-fold
increase in the hazard of death

# stan jm

# formula (Longl): logBili ~ year + (year | id)
# family (Longl): gaussian [identity]

# formula (Long2): albumin ~ year + (year | id)
# family (Long2): gaussian [identity]

# formula (Event): Surv (futimeYears, death) ~ sex
# Dbaseline hazard: bs

# assoc: etavalue (Longl), etavalue (Long2)
# ______

#

# Longitudinal submodel 1: logBili

# Median MAD SD

# (Intercept) 0.678 0.192

# year 0.227 0.042

# sigma 0.354 0.017

#

# Longitudinal submodel 2: albumin

# Median MAD SD

# (Intercept) 3.520 0.082

# year -0.161 0.025

# sigma 0.290 0.014

i

# Event submodel:

# Median MAD SD exp (Median)
# (Intercept) 7.054 2.870 1157.757

# sexf -0.182 0.674 0.834

# Longl|etavalue 0.745 0.281 2.105

# Long2|etavalue -3.141 0.857 0.043

S T

Group-level error terms:
Groups Name Std.Dev. Corr
id Longl| (Intercept) 1.2425
Longl | year 0.1937 0.50
Long?2| (Intercept) 0.5029 -0.64 -0.51
Long2 | year 0.1022 -0.59 -0.81

0.47




> summary (fitl, "assoc")

Model Info:

S oo S S o S S o S S o S S o S S o S o o S o o S o S e o

function: stan jm

formula (Longl) logBili ~ year + (year | id)
family (Longl): gaussian [identity]

formula (Long2): albumin ~ year + (year | id)
family (Long2): gaussian [identity]

formula (Event) Surv (futimeYears, death) ~ sex
baseline hazard: bs

assoc: etavalue (Longl), etavalue (Lo
algorithm: sampling

priors: see help('prior summary')
sample: 4000 (posterior sample size)
num obs: 304 (Longl), 304 (Long2)

num subjects: 40

num events: 29 (72.5%)

groups: id (40)

runtime: 2.9 mins
Estimates:

mean sd 2.5% 97.5%
Assoc|Longl|etavalue 0.748 0.281 0.204 1.302
Assoc|Long2|etavalue -3.204 0.903 -5.121 -1.566
Diagnostics:
mcse Rhat n eff

Assoc|Longl |etavalue
Assoc|Long2|etavalue

0.004 1.000 4000
0.018 1.001 2452
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>fitl <- stan jm(

> = list(

> logBili ~ year + (year | id),

> albumin ~ year + (year | id)),

> = Surv (futimeYears, death) ~ sex,

> = pbcLong, = pbcSurv,

> - 14 - 14 - )
>print (fitl)

> summary (fitl, = )

VvV Vv

pl <- posterior traj(fitl, m = 1, ids = 7:8, extrapolate
p2 <- posterior traj(fitl, m = 2, ids = 7:8
p3 <- posterior survfit(fitl, ids = 7:8)

ppl <- plot (pl,
pp2 <- plot (p2,

vline = TRUE, plot observed = TRUE)
vline TRUE, plot observed = TRUE)

plot stack jm(yplot = list(ppl, pp2), survplot = plot(p3))

, extrapolate =

= TRUE)

TRUE)

22
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