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Background

 What is joint modelling?
* The joint estimation of regression models which, traditionally, we would have estimated
separately:

* A (multivariate) longitudinal mixed model for a longitudinal outcome(s)
* A time-to-event model for the time to an event of interest

* The “sub”models are linked through shared (subject-specific) parameters

e Why use it?
* We want to understand how (some function of) the longitudinal outcome is
associated with risk of the event

e can allow for measurement error in the biomarker

e can allow for discrete-time measurement of the biomarker
* “Dynamic” predictions of the risk of the event
e Separating out “direct” and “indirect” effects of treatment

e Adjusting for informative dropout



Yijk(t) is the value at time t of the
. . kt longitudinal marker (k = 1, ..., K)
Joint model formulation for the i individual (i = 1,..., )
at the j ! time point (j = 1, ..., Jix)
T; is “true” event time, C; is the censoring time
Ti* = min(Ti,Ci) and di = I(Tl < Cl)

Longitudinal submodel

Yijk (t) follows a distribution in the exponential family with expected value p; j; (t) and
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Nik(t) — Linear predictor (or expected value of the biomarker) at time t

dn;"‘(t) — Rate of change in the linear predictor (or biomarker) at time t
t

t
j Nk (s) ds —> Area under linear predictor (or biomarker trajectory), up to time t
0

Ni(t —u) — Lagged value (for some lag time u)

Nir(t) X 1 (t) — Interactions between values of the different biomarkers (for k # k')

Nk (t) X c;(t) — Interactions with observed data (e.g. for some observed covariate c;(t))



Joint modelling software

An abundance of methodological developments in joint modelling

Not all methods have been translated into “user-friendly” software

Well established software for one longitudinal outcome
e e.g.stjm (Stata); joineR, JM, JMbayes, frailtypack (R); JMFit (SAS)

Recent software developments for multiple longitudinal outcomes*
* released packages: joineRML (R, available on CRAN)
» development packages: survtd, rstanarm, JMbayes (R, available on GitHub); stjm

Each package has their strengths and limitations

e e.g. (non-)normally distributed longitudinal outcomes, selected association
structures, speed, etc.

* Hickey et al. (2016) provide a nice “recent” review of multivariate joint model software
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Bayesian joint models via Stan

Development version available on GitHub
* https://github.com/sambrilleman/rstanarm

Stan

C++ library
for
full Bayesian
inference

—>

RStan

R
interface
for
Stan

-—>

RStanArm

R package
for
Applied
Regression
Modelling

(soon to be migrated to https://github.com/stan-dev/rstanarm then CRAN)

Can specify multiple longitudinal outcomes

Allows for multilevel clustering in longitudinal submodels (e.g. time < patients < clinics)

Variety of families (and link functions) for the longitudinal outcomes
e e.g. normal, binomial, Poisson, negative binomial, Gamma, inverse Gaussian

Variety of association structures

Variety of prior distributions

* Regression coefficients: normal, student t, Cauchy, shrinkage priors (horseshoe, lasso)

* Novel decomposition of covariance matrix for the random effects

Posterior predictions — including “dynamic predictions” of event outcome

Baseline hazard

* Weibull, piecewise constant, B-splines regression

https://github.com/sambrilleman/rstanarm 13
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Application to Melanoma Institute Australia data

* Background:

* Approx. 40% of melanoma patients do not respond to immunotherapy treatment

But currently, no reliable marker of which patients will (or will not) respond

* Often clinician must wait until disease progression before altering treatment

If risk of progression was known earlier then this could improve patient management

* e.g.switch drugs, escalation of immunotherapy, initiate more aggressive treatments
(e.g. radiotherapy), improve quality of life (e.g. initiate palliative care)

e Data and aims:

Phase 1 & 2 clinical trial patients with late-stage melanoma (N = 332)

Model the natural history of several clinical biomarkers (LDH, neutrophils,
lymphocytes)

Explore which biomarkers are associated with progression-free survival

Determine the most appropriate functional form(s) for any associations



mo@ <- stan_jm(
. ;. . formulalLong = list(
Model specification ldh ~ te + (te | id),
neu ~ to + (t0 | id),
lym ~ t0 + (t0 | id)),
formulaEvent = Surv(etime, status) ~ agecat + sex,
datalLong = dat2, dataEvent = dat2.id,
family = Gamma(log), time_var = "toO")

* GLMM (Gamma, log link) for each biomarker

. Aiji (£)
Yiji(t) ~ Gamma (vk:/lijk(t)) with expected value Hijk(t) = ”
k
with linear predictor

Nijk (£) =log(u;jk (£)) = Pok + Pik t + boix + byt (=1,..,N; j=1,....Ju; k=1,...,3)
e Weibull proportional hazards model

3 3
hi(t) = ho(t)exp| vo + v1G; + Z Y2aAia t+ Z i (t)
a=1 k=1

where G; =1 if individual i is male (or 0 otherwise)

A;q = 1if individual i is in age category a (or O otherwise)



Hazard ratios (event submodel)

Since a one unit
increase in log(LDH)
corresponds to an
exp(1) = 2.7-fold
increase in LDH, we
can say that:

“A 2.7-fold increase
in mean LDH is
associated with an
estimated 1.6-fold
increase in the
hazard of death or
disease progression”

Coefficient Standard error Hazard
(log HR) (posterior SD) ratio
Age category (years, ref: <50)
51to 60 -0.166 0.274 0.847
61 to 70 0.113 0.267 1.120
71 and above 0.050 0.279 1.052
Gender (ref: Female)
Male -0.110 0.211 0.896
Association parameters
LDH (log value) 0.461 0.192 1.586 €
Neutrophils (log value) 2.287 0.454 9.845
Lymphocytes (log value) -0.472 0.286 0.624




Posterior predictions (longitudinal)

pp_check(m@, m
pp_check(m@, m
pp_check(m@, m

plot(posterior_

1)
2)
3)

traj(mo, ids = c(5,6,9))
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ps_check # overall standardised survival vs KM

. # obtain IDs of individuals in risk group

plot(posterior_survfit(m@, ids = ids, time = 0,

ids <-

standardise = TRUE))

Posterior predictions (event)

Cancer staging:
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ml <- update(m@, assoc = c(“etavalue”,

Association structures “etavalue_data(~ gender))
allowing for effect modification |r2 <- update(me, assoc = c(“etavalue”,

“etavalue data(~ stage))

* Interaction term between the (log) * Interaction term between the (log) value of
value of the biomarker and gender the biomarker and cancer stage/severity
I |
I ]
|
log(LDH), Females- O log(LDH), MO/M1A1 =
I log(LDH), M1B+ -:IO-
log(LDH), Males - o
29(LDR, Males | log(LDH), M1C- R
log(Neutrophils), Females - | —— log(Neutrophils), MO/M1A - : — —
. 1 -
log(Neutrophils), Males - : — — log(Neutrophils), M1B : — —
oa(Lymphocytes). Ferl : log(Neutrophils), M1C | -om
og(Lymphocytes), Females- —
: log(Lymphocytes), MO/M1A - —:-o—
Iog(LymphocyteS), Males |  emmm(mmm : |og(|_ymphocytes)’ M1B- +
; ] . ! . i |
7 0 ] > 3 log(Lymphocytes), M1C -O-I

Association parameter (log hazard ratio) 2. ; 0!0 2.5 5.0

Association parameter (log hazard ratio)
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Estimation

Likelihood function:

. K mnj
p(Yi1, -, Vi, Ti, d;| by, ) = j p(vijr () |bi, 05, ) | p(Ti, d;|b;, 07) p(b;|60}) db;
~oo \ ki jo1
kth longitudinal event random effects
submodel submodel model

* Assumes conditional independence, that is, conditional on b; the distinct
longitudinal and event processes are independent

* requires we specify the model correctly, including the association structure

* rstanarm uses a full Bayesian specification (i.e. includes priors)

e Estimation via MCMC (Hamiltonian Monte Carlo) or, less preferably, variational
Bayes



