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ORIGINAL ARTICLE

Background: Body mass index (BMI) rebound refers to the begin-
ning of the second rise in BMI during childhood. Accurate estimation 
of an individual’s timing of BMI rebound is important because it is 
associated with health outcomes in later life.
Methods: We estimated BMI trajectories for 6545 children from 
the Avon Longitudinal Study of Parents and Children. We used a 
novel Bayesian two-phase piecewise linear mixed model where the 
“change point” was an individual-level random effect corresponding 
to the individual-specific timing of BMI rebound. The model’s indi-
vidual-level random effects (intercept, prechange slope, postchange 

slope, change point) were multivariate normally distributed with an 
unstructured variance–covariance matrix, thereby, allowing for cor-
relation between all random effects.
Results: Average age at BMI rebound (mean change point) was 6.5 
(95% credible interval: 6.4 to 6.6) years. The standard deviation of 
the individual-specific timing of BMI rebound (random effects) was 
2.0 years for females and 1.6 years for males. Correlation between 
the prechange slope and change point was 0.57, suggesting that faster 
rates of decline in BMI prior to rebound were associated with rebound 
occurring at an earlier age. Simulations showed that estimates from 
the model were less biased than those from models, assuming a com-
mon change point for all individuals or a nonlinear trajectory based 
on fractional polynomials.
Conclusions: Our model flexibly estimated the individual-specific 
timing of BMI rebound, while retaining parameters that are mean-
ingful and easy to interpret. It is applicable in any situation where 
one wishes to estimate a change-point process which varies between 
individuals.

(Epidemiology 2017;28: 827–833)

During early life, humans typically experience two periods 
of increasing body mass index (BMI) and one period of 

decline. The first period of increase is generally quite rapid 
and occurs during the first year of life. From around 1 year of 
age, BMI gradually declines for several years. “BMI rebound” 
refers to the time at which the child’s BMI stops decreasing 
and instead starts increasing for a second time, an increase 
that continues into adulthood.1 For most children, this will 
occur around 6 years of age; however, there is relatively large 
heterogeneity between individuals. It is important to be able 
to accurately identify the individual-specific timing of BMI 
rebound because it is associated with health outcomes in later 
life, including risk factors for chronic disease. For example, 
early BMI or adiposity rebound has been shown to be associ-
ated with an increased risk of subsequent obesity,1–4 type 2 
diabetes,5 and potentially also cardiovascular disease.6

A statistical framework for estimation of the timing of 
BMI rebound is provided by piecewise linear mixed model-
ing. The standard two-phase piecewise linear mixed model 
is limited by the fact that the “change point,” defined as the 
time at which a change in slope occurs, is common across all 
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individuals. A number of authors have, therefore, extended 
the model to treat the change point as a random effect param-
eter, thereby, allowing individuals to have their own change 
point.7–12 The use of a random change point has the advan-
tage of increasing model flexibility and is, therefore, likely 
to improve model fit without major alteration of parameter 
interpretation. Such models provide useful insights when 
the person-specific timing of the change point is of intrin-
sic interest, for example, estimating the onset of cognitive 
decline in the elderly7,12,13 and disease progression in HIV 
patients.9,10

Piecewise linear mixed models with a random change 
point have predominantly been estimated using a Bayesian 
approach,7–10,12 although frequentist estimation techniques 
have also been proposed.11 Extensions to these models have 
been considered, for example, the use of smooth changes in 
slope around the random change point,13 multiple random 
change points,14 mixtures of linear and piecewise linear mod-
els,15 or the incorporation of a random change point model 
in the context of joint modeling of longitudinal and time-to-
event data.16–18 However, a limitation of the random change 
point model when used in epidemiologic research has been a 
preference, presumably on pragmatic computational grounds 
rather than on any inherent substantive rationale, to not allow 
all individual-level random effects to be correlated; for exam-
ple, assuming the random change point is independent of 
other individual-specific parameters in the model, such as the 
rate of growth.

In this article, we present a two-phase piecewise lin-
ear mixed model with a random change point, which we 
use to estimate longitudinal BMI trajectories for children 
aged between 1 and 15 years. The random change point in 
this model corresponds to the individual-specific timing of 
BMI rebound in childhood. We extend previous approaches 
by estimating an unstructured correlation matrix across the 
model’s four individual-level random effects (intercept, pre-
change slope, postchange slope, and change point), thereby, 
gaining additional insights. We estimate our model under a 
Bayesian framework using the statistical software Stan.19 In 
a simulation study, we compare our random change point 
model to an alternative model based on fractional polyno-
mials, as well as simpler change point models that do not 
allow for between-individual variability in the timing of 
BMI rebound.

METHODS

The Avon Longitudinal Study of Parents and 
Children

The Avon Longitudinal Study of Parents and Children 
(ALSPAC) is a prospective birth cohort that enrolled expect-
ant mothers in southwest England who were due to give birth 
between 1 April 1991 and 31 December 1992. A detailed 
description of the ALSPAC cohort, including the recruitment 

process, has been described elsewhere,20 and the ALSPAC 
website contains details of all the available data through a 
fully searchable data dictionary (http://www.bris.ac.uk/alspac/
researchers/data-access/data-dictionary/). Ethical approval for 
this study was obtained from the ALSPAC Ethics and Law 
Committee and the Local Research Ethics Committees.

Model Formulation
Let yij = yi(tij) denote the observed BMI measurements 

taken for the ith child (i = 1 ,…, N) at some time points tij  
( j = 1, …, ni) measured in years. We define BMI as weight 
(in kilograms) divided by the square of height (in meters2). 
We model the observed BMI measurements using a piecewise 
linear mixed effects model of the form

y Nij ij y~ ,µ σ 2( )
µ β β ω ω β ω ωij i i ij i ij i i ij i ij it I t t I t= + −( ) ≤( ) + −( ) >1 2 3 ( )

 (1)

where I .() is the indicator function, ωi is the individual- 
specific change point, β1i  is the individual-specific intercept 
denoting the expected value of BMI at the change point, β2i  
is the individual-specific linear slope before the change point 
(prechange slope), and β3i  is the individual-specific linear 
slope after the change point (postchange slope). The individ-
ual-specific random parameters β1i ,  β2i ,  β3i ,  and ωi  can be 
further specified as
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such that β10 ,  β20 ,  and β30  represent the fixed (population 
average) intercept, prechange slope, and postchange slope 
parameters, ω0  represents the fixed (population average) 
change point, and u i1 , u i2 , u i3 , and u i4  are the individual-level 
random effects (or deviations from the population average) 
associated with those parameters. We assume the vector of 
individual-level random effects ui = ( )u u u ui i i i1 2 3 4, , ,  is mul-
tivariate normally distributed with mean zero and an unstruc-
tured variance–covariance matrix
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In other words, our model allows for correlation between the 
random intercept, prechange slope, postchange slope, and 
change point parameters. We denote the corresponding cor-
relation matrix for the random effects as

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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Model Estimation
We adopt a Bayesian approach for estimating our model 

that we implement in the software Stan.19 Following the advice 
of Gelman, we use weakly informative prior distributions for 
the regression coefficients.21 We use the separation strategy 
to decompose the random effects variance–covariance matrix 
Σ into a correlation matrix R  and separate standard devia-
tion terms for each of the random effects (σuk

k; , , ,= 1 2 3 4 ).22  
This allows us to specify prior distributions separately for 
each of these components in a much more intuitive way. We 
use the “LKJ” correlation matrix distribution, implemented in 
Stan, as a prior distribution for the random effects correlation 
matrix.23,24 We used R Version 3.1.3 for preprocessing of data 
and for postprocessing and analysis of the MCMC samples.25 
We interface with Stan from R using the RStan package.19 The 
eAppendix; http://links.lww.com/EDE/B247 (Sections 1 and 2)  
contains further details of the model implementation (for 
example, prior distributions and computation) and the code 
for fitting the random change point model; http://links.lww.
com/EDE/B242; http://links.lww.com/EDE/B246.

We graphically present the estimated BMI trajectories 
in two ways. First, we plot the 95% credible interval (i.e., the 
2.5th and 97.5th percentiles) of the posterior predictive distri-
bution given by
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where �y ti ( ) is a newly generated BMI measurement under 

the model (i.e., an in-sample prediction) for the ith child at 

time t, yi = …( )y yi ini1, ,  denotes the vector of observed 

BMI measurements for the ith child, y y yN= …( )1, ,  denotes 
the vector of observed measurements for all children, 

ui = ( )u u u ui i i i1 2 3 4, , ,  is the vector of random effects for the 

ith child, and θθ = ( )β β β ω σ10 20 30 0
2, , , , ,y Σ  denotes the vector 

of all remaining unknown model parameters. Since the new 
data is assumed to be independent of the observed data given 
the model parameters, the p tyi� ( )( )|ui ,θθ  term in equation (4) 
does not need to condition on y. Further, by integrating over 
the random effects ui  and the hyperparameters θθ , the pos-
terior predictive distribution incorporates uncertainty associ-
ated with each of the parameters estimated under the model.

We also plot the expected BMI trajectory calculated 
using the posterior mean for each of the model parameters 

defined as E y ti ( )[ ]| θθ*  for the ith child at time t, where θθ*  
denotes the complete vector of posterior means for all param-
eters in the model, including random effects. This trajectory 
will exhibit the abrupt change in slope at the change point, 
which is characteristic of the piecewise linear mixed model, 
because the estimates are calculated using a unique realiza-
tion of the model parameters. Conversely, predictions from 
the posterior predictive distribution are based on the joint 
posterior distribution for all model parameters (including the 
random change point) and, therefore, may exhibit apparent 
nonlinearity around the change point.

Comparison With Alternative Models
In a simulation study, we compared the performance of 

our random change point model to simpler alternative change 
point models that have been commonly used. This includes 
a model that assumes a fixed (common) change point for all 
individuals or one that assumes the random change point is 
independent from the other individual-level random effects. 
When generating the data for our simulation study, we 
assumed that there is true underlying heterogeneity between 
individuals in terms of when BMI rebound occurs. The simu-
lation study, therefore, allows us to quantify the bias that may 
be induced by not appropriately allowing for between-subject 
variability in the timing of the change point. In addition, we 
compared our random change point model to a complex alter-
native that allows for flexible BMI trajectories through the use 
of fractional polynomials. The models were compared using 
data generated according to two different processes: one based 
on our random change point model and the other based on the 
fractional polynomial model.

RESULTS
A total of 14,701 children in the ALSPAC cohort were 

alive at 1 year of age. In our analysis, we include those chil-
dren who had at least eight BMI measurements taken between 
ages 1 and 15 years and analyze data for females and males 
separately. Therefore, our analysis includes 3248 female and 
3297 male children, with a total of 38,686 female and 39,367 
male BMI measurements. The mean (maximum) number of 
BMI measurements per child was 11.9 (35) for females and 
11.9 (34) for males. Variation in the observed BMI measure-
ments generally increased with age, and the lowest overall 
mean BMI was observed between ages 5 and 7 years (Table 1). 
The Figure shows the observed BMI trajectories for 10 female 
children in the ALSPAC cohort.

We used the random change point model to estimate 
individual-specific changes in BMI between ages 1 and  
15 years. Table 2 shows the estimated parameters from the fitted 
model, for females and males separately (95% credible inter-
vals are shown in the table; however, these are omitted from 
the following text to aid readability). The estimated mean BMI 
when rebound occurs is 15.28 and 15.25 kg/m2 for females 
and males, respectively. The estimated mean rate of change in 

http://links.lww.com/EDE/B247
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BMI prior to, and following, rebound is −0.36 and 0.75 kg/m2  
per year for females, while the corresponding estimates for 
males are −0.43 and 0.63 kg/m2 per year. The estimated mean 
change point, which is the age at which BMI rebound is esti-
mated to occur for the average individual, is 6.5 years for 
both females and males. There appears to be relatively large 

variability between individuals in terms of the age at which 
BMI rebound occurs, with the standard deviation for the 
random change point estimated at 2.0 years for females and  
1.6 years for males. There was a moderately strong positive 
correlation (0.57 for both females and males) between the 
random effects for the prechange slope and the change point 
itself, suggesting children with a faster rate of decline in BMI 
prior to rebound are likely to experience rebound occurring at 
an earlier age.

The Figure shows as dashed lines the estimated BMI 
trajectories for 10 female children calculated at the posterior 
mean for each of the model parameters, while the shaded area 
represents the 95% credible interval of the posterior predic-
tive distribution. The model fits the observed data well, with 
the majority of data points fitting within the 95% credible 
limits for the posterior predictive distribution. The between-
child variation in the random change points is evident from 
the plots. In the eAppendix; http://links.lww.com/EDE/B247 
(Section 3), we have provided several plots of the standardized 
residuals from the fitted model. The residuals appeared to be 
normally distributed with no obvious patterns over time and 
constant variance, suggesting an adequate model fit across the 
entire age range.

TABLE 1. Mean, Standard Deviation, and Number of 
Observed BMI Measurements for Individuals in the ALSPAC 
Cohort, Stratified by Age Period of Observation and Gender

Age Period of Observation

Mean (SD) [N] of Observed BMI 
Measurements

Females Males

≥1 and ≤3 years 16.8 (1.6) [6867] 17.1 (1.5) [7394]

>3 and ≤5 years 16.2 (1.5) [5375] 16.3 (1.4) [5741]

>5 and ≤7 years 15.8 (2.3) [3774] 15.8 (1.9) [4034]

>7 and ≤9 years 16.7 (2.4) [5612] 16.4 (2.1) [5584]

>9 and ≤11 years 18.0 (3.0) [6498] 17.6 (2.8) [6386]

>11 and ≤13 years 19.5 (3.5) [5505] 19.1 (3.4) [5291]

>13 and ≤15 years 20.3 (3.5) [5055] 19.7 (3.4) [4937]

ALSPAC indicates Avon Longitudinal Study of Parents and Children; BMI, body 
mass index.

FIGURE. Observed BMI data and estimated BMI trajectories (under the random change point model) for 10 female children in 
the ALSPAC dataset. The dashed line represents the estimated BMI trajectory based on the posterior mean for each of the param-
eters in the model, while the shaded area represents the 95% credible interval associated with the posterior predictive distribution 
for that child.

http://links.lww.com/EDE/B247
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In the eAppendix; http://links.lww.com/EDE/B247 
(Section 4), we describe in detail the results from our simu-
lation study. In brief, we found that a fractional polynomial 
model, when fitted to data generated under a random change 
point process, severely underestimated the mean timing of 
BMI rebound (ω0

 was estimated as the turning point of the 
fractional polynomial model and resulted in relative bias of 
approximately −20%). However, the estimate of the mean tim-
ing of BMI rebound obtained from the random change point 
model was much less biased, even when the true data-generat-
ing process was based on fractional polynomials (relative bias 
for ω0

 of approximately −2%).

When comparing several alternative change point mod-
els, we found that a model with a fixed (common) change 
point for all individuals resulted in the largest increases in 
bias, and this was relevant for both fixed and random effect 
parameters. Models with a random change point were much 
less biased, but we did find that as the true correlation between 

the random change point and the other individual-level ran-
dom effects increased, there was increasing bias in the esti-
mated parameters from a model which wrongly assumed 
that the change point was independent. While the covariance 
and correlation parameters for the random effects were most 
severely impacted, the fixed-effect regression coefficients 
were also affected.

DISCUSSION
In this article, we have used a piecewise linear mixed 

model with a random change point to estimate BMI trajec-
tories across childhood for 6545 children from the ALSPAC 
study. The timing of BMI rebound is a biologic characteristic 
known to vary between individuals. Through the use of a ran-
dom change point, our model provided the flexibility required 
to estimate the individual-specific timing of BMI rebound 
for each child, while also providing an estimate of the mean 
timing of BMI rebound and the variability around that mean. 
The estimated parameters in our model, for example, the indi-
vidual-specific (and average) intercepts, slopes, and change 
points, all remain easily interpretable. Alternative models that 
allow for flexible nonlinear trajectories (through the use of, 
say, polynomials, nonlinear splines, or other nonlinear func-
tions, such as the SuperImposition by Translation And Rota-
tion (SITAR) model26) may fit observed data better, but the 
interpretation of parameter estimates is often problematic and 
the generalizability of increasingly tailored models may be 
questioned.

Previous studies aimed at identifying the timing of 
BMI rebound have taken a variety of approaches. Relatively 
simple approaches such as the “visual inspection method” 
have been used, whereby the minimum of the BMI curve is 
assessed visually using the observed data but without any fit-
ted model.27,28 When using the visual inspection method, the 
timing of the rebound is limited to those ages at which a BMI 
value is observed, and there will be varying amounts of mea-
surement error depending on the number and timing of ages of 
measurement. Modeling approaches, on the other hand, allow 
the timing of the rebound to be estimated as having occurred 
between observation time points. Nonetheless, it has been 
suggested that the visual inspection method may more appro-
priately capture the physiological basis for BMI or adiposity 
rebound.29 This is because individuals who have a prolonged 
period of minimum BMI (a “plateau”) will have the timing of 
the rebound estimated at the end of the plateau under the usual 
criteria for the visual inspection method but estimated closer 
to the centre of the plateau (in other words at an earlier age) 
under most modeling approaches.

The most common modeling approach for estimating 
BMI rebound has been the use of polynomial functions for 
modeling changes in BMI over time.4,29–31 Wen et al. used 
linear mixed models with fractional polynomials to model 
BMI trajectories across childhood.30 They estimated BMI 
rebound using the individual-level turning point for the fitted 

TABLE 2. Parameter Estimates From the Piecewise Linear 
Mixed Model With a Random Change Point When Used to 
Model Changes in BMI Between Ages 1 and 15 Years for 
Male and Female Children in the ALSPAC Cohort

Parameter Females Males

Fixed effects

  β10 15.28 (15.23 to 15.34) 15.25 (15.20 to 15.31)

  β20 −0.36 (−0.38 to −0.34) −0.43 (−0.45 to −0.41)

  β30 0.75 (0.74 to 0.77) 0.63 (0.62 to 0.65)

  ω0 6.50 (6.38 to 6.61) 6.49 (6.39 to 6.59)

SD residual error

  σy 1.02 (1.01 to 1.03) 1.06 (1.05 to 1.07)

SD random effects

  σu1 1.29 (1.21 to 1.36) 1.28 (1.23 to 1.33)

  σu2 0.23 (0.21 to 0.25) 0.24 (0.23 to 0.26)

  σu3 0.36 (0.34 to 0.37) 0.37 (0.36 to 0.38)

  σu4 2.01 (1.91 to 2.13) 1.58 (1.49 to 1.67)

Covariance parameters

  σu1u2 0.07 (0.03 to 0.12) 0.10 (0.07 to 0.13)

  σu1u3 0.08 (0.05 to 0.12) 0.00 (−0.03 to 0.02)

  σu1u4 −0.62 (−0.78 to −0.47) −0.52 (−0.63 to −0.40)

  σu2u3 0.02 (0.01 to 0.03) −0.02 (−0.02 to −0.01)

  σu2σu4 0.27 (0.22 to 0.32) 0.22 (0.18 to 0.26)

  σu3u4 0.05 (0.00 to 0.11) −0.08 (−0.11 to −0.05)

Correlation parameters

  ρu1u2 0.25 (0.11 to 0.37) 0.32 (0.24 to 0.39)

  ρu1u3 0.18 (0.11 to 0.27) −0.01 (−0.06 to 0.05)

  ρu1u4 −0.24 (−0.30 to −0.18) −0.26 (−0.31 to −0.20)

  ρu2u3 0.21 (0.10 to 0.35) −0.17 (−0.25 to −0.09)

  ρu2u4 0.57 (0.50 to 0.65) 0.57 (0.49 to 0.64)

  ρu3u4 0.08 (0.00 to 0.15) −0.14 (−0.20 to −0.08)

Estimates provided are posterior means and associated 95% credible intervals in 
parentheses.

ALSPAC indicates Avon Longitudinal Study of Parents and Children; BMI, body 
mass index; SD, standard deviation.

http://links.lww.com/EDE/B247
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polynomial function. One difficulty with the use of a fitted 
polynomial function, however, is that it does not directly 
provide easily interpretable slope estimates corresponding 
to the rates of change in BMI at various stages of childhood 
(although it would be possible to explicitly calculate the slope 
estimates for each individual at a specific set of discrete ages 
and summarize these values). An additional advantage of our 
modeling approach is that it allows us to succinctly quantify 
variation in the timing of BMI rebound. For example, under 
the assumption of normally distributed random effects, we 
estimated the standard deviation of the timing of BMI rebound 
as 2.0 years for females and 1.6 years for males. Further, in 
our simulation study (eAppendix; http://links.lww.com/EDE/
B247, Section 4), we found that an alternative analysis model 
based on fractional polynomials only provided an unbiased 
estimate of the mean timing of BMI rebound when the true 
data generating process was also based on fractional polyno-
mials. However, our random change point model provided rel-
atively unbiased estimates of the mean timing of BMI rebound 
across two different data generating processes: one based on 
the random change point model and the other based on frac-
tional polynomials.

The model used in this study was estimated using an 
unstructured variance–covariance matrix for the individual-
level random effects. A simplistic alternative to estimating an 
unstructured variance–covariance matrix is to assume inde-
pendence between some or all of the individual-level random 
effects by setting their respective pairwise correlations to 
zero. For example, Muniz Terrera et al.12 and Kiuchi et al.9 
allow for a 3 × 3 unstructured covariance matrix for the ran-
dom intercept and two random slopes but estimated the ran-
dom change point independently. Muggeo et al.11 assumed a 
block diagonal covariance structure for the random effects, 
whereby they only allowed for two non-zero correlations. 
Other authors have used covariance structures with even 
greater restrictions.7,8,13 Although restricting some (or all) of 
the random effect correlation parameters to zero simplifies the 
model estimation, it does have the potential to bias results (see 
the results from our simulation study in the eAppendix; http://
links.lww.com/EDE/B247). In addition, the estimation of all 
pairwise correlations between the individual-level random 
effects has the potential to provide benefits for interpretation, 
because in some settings, these correlation terms may be of 
direct interest.

Importantly, the most flexible random change point 
model we considered in the simulation study, which resulted 
in substantially less bias, required only four additional param-
eters to be estimated when compared with the model that 
assumed a common change point for all individuals. None-
theless, estimating an unstructured covariance matrix can be 
computationally intensive when the random effects distribu-
tion is of a relatively high dimension. For example, in the case 
of a two-phase piecewise linear mixed model with a random 
intercept, two random slopes (prechange and postchange) and 

a random change point, the resulting unstructured variance–
covariance matrix requires estimation of 10 parameters (four 
variances and six covariances). Furthermore, the variance of 
the residual error also needs to be estimated. In many epide-
miologic studies, the requirements of estimating all of these 
parameters would be challenging, for example, due to a lim-
ited number of repeated measurements per individual. Con-
vergence difficulties may also arise if the variances that need 
to be estimated are close to zero. In a Bayesian setting, the 
choice of prior distribution for the variance–covariance matrix 
can also pose difficulties. In this study, we used the Bayes-
ian software Stan for fitting our model and discussed some of 
the computational benefits this provided. We are not aware of 
any paper that has discussed fitting this type of model using 
Stan or with the prior specification we used for the random 
effects distribution. In the eAppendix; http://links.lww.com/
EDE/B247, we have provided the Stan code, as well as some 
simulated data, so that researchers can try fitting the model 
themselves (all software is freely available).

A further benefit of directly estimating parameters of 
key interest, such as the individual-specific change point, 
is that they can be used in turn to investigate their associa-
tion with other exposures or outcomes. For example, one can 
investigate the association between the change point and later 
health outcomes, either through a joint modeling framework 
or a simpler two-stage process.17 Such extensions may be dif-
ficult when using other nonlinear modeling approaches such 
as polynomials or the SITAR model where parameters of key 
interest, such as the individual-specific timing of a change 
in growth, may not be directly estimated and may need to be 
derived. Importantly, if an estimate of the change point is to be 
used as the exposure in a subsequent model for later life out-
comes, then the approach needs to incorporate the uncertainty 
in the estimated exposure. Ignoring this uncertainty may lead 
to overly precise and/or biased estimates of the effect of expo-
sure on the later life outcome. Another related issue is that 
any measurement error in estimating age at BMI rebound as 
an exposure will bias estimates of associations with outcomes 
towards the null. Therefore, the more accurately BMI rebound 
can be estimated, the less biased the association with the out-
come will be. The most appropriate approach is likely to be 
based on the use of a joint likelihood function for both the 
BMI trajectory model and the model for the later life outcome, 
as has been the main approach used for joint modeling of lon-
gitudinal and time-to-event data.32,33 However, some authors 
have found that in certain situations, a simpler (and less com-
putationally intensive) two-stage approach may lead to very 
little bias, or in some cases no bias, even though it ignores the 
uncertainty in the estimated exposures.34

It is worth noting, however, that the ability to estimate a 
random change point model is likely to depend on the under-
lying statistical power for detecting changes in slope at the 
change point. In our application, we had no issues with model 
identifiability. However, in other settings where the change in 
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slope is subtle or there is large between-individual variability 
in slopes before or after the change point, it may be difficult 
to identify the timing of the change point itself, which in turn 
could lead to model identifiability issues or problems achiev-
ing convergence. Such issues could be considered as part of 
future work.
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