
Joint longitudinal and time-to-event models
via Stan

Sam Brilleman∗, Michael Crowther, Margarita Moreno-Betancur,
Jacqueline Buros Novik, Rory Wolfe

Abstract
The joint modelling of longitudinal and time-to-event data has received much attention in the

biostatistical literature in recent years. In this notebook, we describe the implementation of a shared
parameter joint model for longitudinal and time-to-event data in Stan. The methods described in the
notebook are a simplified version of those underpinning the stan_jm modelling function that has recently
been contributed to the rstanarm R package. This notebook will proceed as follows. In Section 1 we
provide an introduction to the joint modelling of longitudinal and time-to-event data, including briefly
describing the potential motivations for using such an approach. In Section 2 we describe the formulation
of a multivariate shared parameter joint model and introduce it’s log likelihood function. In Section 3
we describe some of the more important features of the Stan code required to implement the model. In
Section 4 we present a short applied example to demonstrate estimation of the model and the type of
inferences that can be obtained. In Section 5 we close with a discussion.

Date this notebook was compiled: 29 November 2017.

1 Introduction

Joint modelling can be broadly defined as the simultaneous estimation of two or more statistical models which
traditionally would have been separately estimated. When we refer to a shared parameter joint model for
longitudinal and time-to-event data, we generally mean the joint estimation of: 1) a longitudinal mixed effects
model which analyses patterns of change in an outcome variable that has been measured repeatedly over time
(for example, a clinical biomarker) and 2) a survival or time-to-event model which analyses the time until
an event of interest occurs (for example, death or disease progression). Joint estimation of these so-called
“submodels” is achieved by assuming they are correlated via individual-specific parameters (i.e. individual-level
random effects).

Over the last two decades the joint modelling of longitudinal and time-to-event data has received a significant
amount of attention [1-5]. Methodological developments in the area have been motivated by a growing
awareness of the benefits that a joint modelling approach can provide. In clinical or epidemiological research
it is common for a clinical biomarker to be repeatedly measured over time on a given patient. In addition, it is
common for time-to-event data, such as the patient-specific time from a defined origin (e.g. time of diagnosis
of a disease) until a terminating clinical event such as death or disease progression to also be collected. The
figure below shows observed longitudinal measurements (i.e. observed “trajectories”) of log serum bilirubin for
a small sample of patients with primary biliary cirrhosis. Solid lines are used for those patients who were still
alive at the end of follow up, while dashed lines are used for those patients who died. From the plots, we can
observe between-patient variation in the longitudinal trajectories for log serum bilirubin, with some patients
showing an increase in the biomarker over time, others decreasing, and some remaining stable. Moreover,
there is variation between patients in terms of the frequency and timing of the longitudinal measurements.

∗Corresponding author: sam.brilleman@monash.edu.

1

mailto:sam.brilleman@monash.edu

Patient 5 Patient 6 Patient 7 Patient 8

Patient 1 Patient 2 Patient 3 Patient 4

0 5 10 0 5 10 0 5 10 0 5 10

−1

0

1

2

3

−1

0

1

2

3

Time (years)

Lo
g

se
ru

m
 b

ili
ru

bi
n

Died

No

Yes

From the perspective of clinical risk prediction, we may be interested in asking whether the between-patient
variation in the log serum bilirubin trajectories provides meaningful prognostic information that can help us
differentiate patients with regard to some clinical event of interest, such as death. Alternatively, from an
epidemiological perspective we may wish to explore the potential for etiological associations between changes
in log serum bilirubin and mortality. Joint modelling approaches provide us with a framework under which
we can begin to answer these types of clinical and epidemiological questions.

More formally, the motivations for undertaking a joint modelling analysis of longitudinal and time-to-event
data might include one or more of the following:

• One may be interested in how underlying changes in the biomarker influence the occurrence of the
event. However, including the observed biomarker measurements directly into a time-to-event model
as time-varying covariates poses several problems. For example, if the widely used Cox proportional
hazards model is assumed for the time-to-event model then biomarker measurements need to be available
for all patients at all failure times, which is unlikely to be the case [3]. If simple methods of imputation
are used, such as the “last observation carried forward” method, then these are likely to induce bias
[6]. Furthermore, the observed biomarker measurements may be subject to measurement error and
therefore their inclusion as time-varying covariates may result in biased and inefficient estimates. In
most cases, the measurement error will result in parameter estimates which are shrunk towards the null
[7]. On the other hand, joint modelling approaches allow us to estimate the association between the
biomarker (or some function of the biomarker trajectory, such as rate of change in the biomarker) and
the risk of the event, whilst allowing for both the discrete time and measurement-error aspects of the
observed biomarker.

• One may be interested primarily in the evolution of the clinical biomarker but may wish to account for
what is known as informative dropout. If the value of future (unobserved) biomarker measurements are
related to the occurrence of the terminating event, then those unobserved biomarker measurements will
be “missing not at random” [8,9]. In other words, biomarker measurements for patients who have an

2

event will differ from those who do not have an event. Under these circumstances, inference based solely
on observed measurements of the biomarker will be subject to bias. A joint modelling approach can
help to adjust for informative dropout and has been shown to reduce bias in the estimated parameters
associated with longitudinal changes in the biomarker [1,9,10].

• Joint models are naturally suited to the task of dynamic risk prediction. For example, joint modelling
approaches have been used to develop prognostic models where predictions of event risk can be updated
as new longitudinal biomarker measurements become available. Taylor et al. [11] jointly modelled
longitudinal measurements of the prostate specific antigen (PSA) and time to clinical recurrence of
prostate cancer. The joint model was then used to develop a web-based calculator which could provide
real-time predictions of the probability of recurrence based on a patient’s up to date PSA measurements.

In this notebook, we describe the implementation of a shared parameter joint model for longitudinal and
time-to-event data in Stan. In Section 2 we describe the formulation for a multivariate joint model, that
is, a joint model for multiple (i.e. more than one) longitudinal biomarkers and the time to a terminating
event. In Section 3 we describe the important features of the Stan code required to fit the model. In
Section 4 we present a brief applied example to demonstrate estimation of the model and the type of
inferences that can be obtained. Note that the methods and code described in this paper are a simplified
version of the stan_jm modelling function that is being contributed to the rstanarm R package [12,13], see
https://github.com/stan-dev/rstanarm or https://github.com/sambrilleman/rstanarm.

2 Model formulation

A shared parameter joint model consists of related submodels which are specified separately for each of
the longitudinal and time-to-event outcomes. These are therefore commonly referred to as the longitudinal
submodel(s) and the event submodel. The longitudinal and event submodels are linked using shared individual-
specific parameters, which can be parameterised in a number of ways. We describe each of these submodels
below.

2.1 Longitudinal submodel(s)

We assume yijm(t) = yim(tij) corresponds to the observed value of the mth (m = 1, ...,M) biomarker for
individual i (i = 1, ..., N) taken at time point tij , j = 1, ..., ni. We specify a (multivariate) generalised linear
mixed model that assumes yijm(t) follows a distribution in the exponential family with mean µijm(t) and
linear predictor

ηijm(t) = gm(µijm(t)) = xT
ijm(t)βm + zT

ijm(t)bim (1)

where xT
ijm(t) and zT

ijm(t) are both row-vectors of covariates (which likely include some function of time, for
example a linear slope, cubic splines, or polynomial terms) with associated vectors of fixed and individual-
specific parameters βm and bim, respectively, and gm is some known link function.

The distribution and link function are allowed to differ over the M longitudinal submodels. We assume
that the dependence across the different longitudinal submodel (i.e. the correlation between the different
longitudinal biomarkers) is captured through a shared multivariate normal distribution for the individual-
specific parameters; that is, we assume

 bi1
...
biM

 = bi ∼ Normal (0,Σ) (2)

3

https://github.com/stan-dev/rstanarm
https://github.com/sambrilleman/rstanarm

for some unstructured variance-covariance matrix Σ.

2.2 Event submodel

We assume that we also observe an event time Ti = min (T ∗i , Ci) where T ∗i denotes the so-called “true” event
time for individual i (potentially unobserved) and Ci denotes the censoring time. We define an event indicator
di = I(T ∗i ≤ Ci). We then model the hazard of the event using a parametric proportional hazards regression
model of the form

hi(t) = h0(t)exp
(
wT

i (t)γ +
M∑

m=1

Qm∑
q=1

αmqfmq(βm, bim; t)
)

(3)

where hi(t) is the hazard of the event for individual i at time t, h0(t) is the baseline hazard at time t, wT
i (t) is

a row-vector of individual-specific covariates (possibly time-dependent) with an associated vector of regression
coefficients γ (log hazard ratios), and the αmq are also coefficients (log hazard ratios).

The longitudinal and event submodels are assumed to related via an “association structure” based on
shared individual-specific parameters and captured via the

∑M
m=1

∑Qm

q=1 αmqfmq(βm, bim; t) term in the linear
predictor of equation (3). The coefficients αmq are referred to as the “association parameters” since they
quantify the strength of the association between the longitudinal and event processes, while the fmq(βm, bim; t)
(for some functions fmq(.)) can be referred to as the “association terms” and can be specified in a variety of
ways which we describe in the next section.

We assume that the baseline hazard h0(t) is modelled parametrically. For simplicity, in the formulation of
the joint model presented in this notebook we will restrict ourselves to modelling the log baseline hazard
using B-splines. Note however that in the rstanarm package’s stan_jm modelling function the baseline
hazard can be specified as either an approximation using B-splines (the default), a Weibull distribution, or
a piecewise constant baseline hazard (sometimes referred to as piecewise exponential). In the case of the
piecewise constant or B-splines baseline hazard, the user can control the flexibility by explicitly specifying
the knot points or degrees of freedom.

2.3 Association structures

As mentioned in the previous section, the dependence between the longitudinal and event submodels is
captured through the association structure, which can be specified in a number of ways. In this notebook, we
focus on the simplest association structure

fmq(βm, bim; t) = ηim(t) (4)

This is often referred to as a current value association structure since it assumes that the log hazard of
the event at time t is linearly associated with the value of the longitudinal submodel’s linear predictor also
evaluated at time t. This is the most common association structure used in the joint modelling literature to
date. In the situation where the longitudinal submodel is based on an identity link function and normal error
distribution (i.e. a linear mixed model) the current value association structure can be viewed as a method for
including the underlying “true” value of the biomarker as a time-varying covariate in the event submodel.1

1By “true” value of the biomarker, we mean the value of the biomarker which is not subject to measurement error or
discrete time observation. Of course, for the expected value from the longitudinal submodel to be considered the so-called “true”
underlying biomarker value, we would need to have specified the longitudinal submodel appropriately!

4

However, there are a variety of other association structures that could be specified. For example, we could
assume the log hazard of the event is linearly associated with the current slope (i.e. rate of change) of the
longitudinal submodel’s linear predictor, that is

fmq(βm, bim; t) = dηim(t)
dt

(5)

Moreover, there are a whole range of possible association structures, many of which have been discussed in the
literature [14-16]. Also note that the full set of association structures that are accommodated in the rstanarm
package’s stan_jm modelling function are not described here but are discussed in the documentation for the
stan_jm function itself.

2.4 Conditional independence assumption

A key assumption of the multivariate shared parameter joint model is that the observed longitudinal
measurements are independent of one another (both across the M biomarkers and across the ni time points),
as well as independent of the event time, conditional on the individual-specific parameters bi. That is, we
assume

Cov
(
yim(t), yim′(t)|bi

)
= 0 (6)

Cov
(
yim(t), yim(t′)|bi

)
= 0 (7)

Cov
(
yim(t), Ti|bi

)
= 0 (8)

for some m 6= m′ and t 6= t′.

Although this may be considered a strong assumption, it is useful in that it allows the full likelihood for joint
model to be factorised into the likelihoods for each of the component parts (i.e. the likelihoods for each of the
submodels and the likelihood for the distribution of the individual-specific parameters).

2.5 Log posterior distribution

Under the conditional independence assumption, the log posterior for the ith individual can be specified as

p(θ, bi|yi, Ti, di) ∝ log
[(

M∏
m=1

ni∏
j=1

p(yijm|bi,θ)
)
p(Ti, di|bi,θ)p(bi|θ)p(θ)

]
(9)

which we can rewrite as

p(θ, bi|yi, Ti, di) ∝
(

M∑
m=1

ni∑
j=1

log p(yijm|bi,θ)
)

+ log p(Ti, di|bi,θ) + log p(bi|θ) + log p(θ) (10)

where
∑ni

j=1 log p(yijm|bi,θ) is the log likelihood for the mth longitudinal submodel, log p(Ti, di|bi,θ) is the
log likelihood for the event submodel, log p(bi|θ) is the log likelihood for the distribution of the group-specific

5

parameters (i.e. random effects), and log p(θ) represents the log likelihood for the joint prior distribution
across all remaining unknown parameters.2

We can rewrite the log likelihood for the event submodel as

log p(Ti, di|bi,θ) = di ∗ log hi(Ti)−
∫ Ti

0
hi(s)ds (11)

and then use Gauss-Kronrod quadrature with Q nodes to approximate
∫ Ti

0 hi(s)ds, such that

∫ Ti

0
hi(s)ds ≈

Ti

2

Q∑
q=1

wqhi

(
Ti(1 + sq)

2

)
(12)

where wq and sq, respectively, are the standardised weights and locations (“abscissa”) for quadrature node q
(q = 1, ..., Q) [17]. In this notebook we choose to use Q = 15 quadrature nodes.3

Therefore, once we have an individual’s event time Ti we can evaluate the design matrices for the event
submodel and longitudinal submodels at the Q+ 1 necessary time points (which are the event time Ti and the
quadrature points Ti(1+sq)

2 for q = 1, ..., Q) and then pass these to Stan’s data block. We can then evaluate
the log likelihood for the event submodel by simply calculating the hazard hi(t) at those Q+ 1 time points
and summing the quantities appropriately. This calculation will need to be performed each time we iterate
through Stan’s model block. The Stan code required to evaluate this log posterior is described in the next
section.

3 Stan code

Here we describe the most important features of the Stan code used to estimate the joint model. The full
Stan code is provided in the separate jm.stan file supplied with this notebook. To simplify things for the
reader, we have limited ourselves to the situation in which M = 2 (i.e. we have two longitudinal biomarkers)
and each of those longitudinal outcomes is modelled using a linear mixed model (i.e. identity link, normal
distribution).

3.1 Data and transformed data blocks

The data block includes dimensions of the model, outcome vectors (e.g. observed biomarker values and event
times), design matrices for the different submodels, and hyperparameters for the prior distributions. We do
not discuss the data or transformed data blocks here in any detail.

2In this notebook we assume normal prior distributions for all unbounded parameters (e.g. regression coefficients) and
half-normals for all lower-bounded parameters (e.g. standard deviations). However, in the rstanarm package there is a variety
of prior distributions available to the user. For the prior distribution for the variance-covariance matrix of the group-specific
parameters (i.e. the variance-covariance matrix for the individual-level random effects) we use a decomposition of the variance-
covariance matrix into a vector of standard deviations and a correlation matrix. We then place a half-Cauchy prior distribution on
each of the standard deviations, and use the LKJ correlation matrix distribution (parameterised in terms of it’s Cholesky factor)
as the prior for the correlation matrix of the group-specific parameters. Further details of this prior distribution are described
in the Stan User Manual and the implementation can be seen in the jm.stan file included with this notebook. Importantly
however, when using the stan_jm modelling function in the rstanarm package, the user can control the hyperparameters
related to this prior distribution. Moreover, the user can instead choose to place a prior on a further decomposed version of the
variance-covariance matrix, whereby the vector of standard deviations are further decomposed into a trace and a simplex vector.
This latter option is taken directly from the prior distribution described for variance-covariance matrices in the rstanarm
package’s stan_glmer modelling, and we refer the reader to the documentation of that package for further details.

3The stan_jm modelling function in the rstanarm package allows the user to choose between Q = 15 (the default), 11, or 7
quadrature nodes.

6

3.2 Parameters block

Most of the parameters defined in the parameters block are “primitive” or “unscaled”, meaning that they will
be given a prior distribution with mean 0 and scale 1 and then converted into the actual parameters used in
the regression equation via the transformed parameters block. Our parameters block therefore includes:

• y1_gamma, y2_gamma: the intercept for each of the longitudinal submodels. These intercept parameters
are unbounded, given that each longitudinal submodel in our application consists of a linear mixed
model (i.e. in our application we assume an identity link function and normal error distribution for
each longitudinal biomarker).

• y1_z_beta, y2_z_beta: the primitive coefficients for each of the longitudinal submodels.
• e_z_beta, a_z_beta: the primitive coefficients and primitive association parameters for the event

submodel.
• y1_aux_unscaled, y2_aux_unscaled: the unscaled standard deviations (SD) of the residual errors for

each of the longitudinal submodels, combined into a single vector.
• e_aux_unscaled: the unscaled coefficients for the B-spline terms used in the baseline hazard.

The parameters block also includes the unscaled group-specific parameters (i.e. unscaled individual-level
random effects). We specify these as a matrix, with the number of rows in the matrix equal to the total
number of group-specific terms in the model, and the number of columns in the matrix equal to the total
number of patients in the data (i.e. the total number of “groups”). We declare a parameter vector that
contains the standard deviations for each of the group-specific parameters and a lower triangular matrix
that corresponds to the Cholesky factor of the correlation matrix for the group-specific terms. The latter is
declared using Stan’s cholesky_factor_corr data type.

parameters {
real y1_gamma; // intercepts in long. submodels
real y2_gamma;
vector[y_K[1]] y1_z_beta; // primitive coefs in long. submodels
vector[y_K[2]] y2_z_beta;
vector[e_K] e_z_beta; // primitive coefs in event submodel (log hazard ratios)
vector[a_K] a_z_beta; // primitive assoc params (log hazard ratios)
real<lower=0> y1_aux_unscaled; // unscaled residual error SDs
real<lower=0> y2_aux_unscaled;
vector[basehaz_df] e_aux_unscaled; // unscaled coefs for baseline hazard

// group level params
vector<lower=0>[b_K] b_sd; // group level sds
matrix[b_K,b_N] z_b_mat; // unscaled group level params
cholesky_factor_corr[b_K > 1 ? b_K : 0]

b_cholesky; // cholesky factor of corr matrix
}

3.3 Transformed parameters block

The transformed parameters block includes code to alter the location and scale of the “primitive” or “unscaled”
parameters, in order to obtain the actual parameters used in the regression submodels.

Note that in the code below b_K is the number of group-specific parameters in the model, so if b_K > 1
then we will be estimating a correlation matrix for the group-specific parameters and, hence, we must
transform the primitive group-specific parameters using b_cholesky and b_sd, rather than b_sd alone. If
there was only one group-specific parameter in the model then there would be no correlation matrix (i.e. no

7

b_cholesky parameter). Also note that for any multivariate joint model (i.e. more than one longitudinal
outcome) we will have b_K > 1.

transformed parameters {
...
// coefs for long. submodels
y1_beta = y1_z_beta .* y1_prior_scale + y1_prior_mean;
y2_beta = y2_z_beta .* y2_prior_scale + y2_prior_mean;

// coefs for event submodel (incl. association parameters)
e_beta = e_z_beta .* e_prior_scale + e_prior_mean;
a_beta = a_z_beta .* a_prior_scale + a_prior_mean;

// residual error SDs for long. submodels
y1_aux = y1_aux_unscaled * y_prior_scale_for_aux[1] + y_prior_mean_for_aux[1];
y2_aux = y2_aux_unscaled * y_prior_scale_for_aux[2] + y_prior_mean_for_aux[2];

// b-spline coefs for baseline hazard
e_aux = e_aux_unscaled .* e_prior_scale_for_aux + e_prior_mean_for_aux;

// group level params
if (b_K == 1)

b_mat = (b_sd[1] * z_b_mat)';
else if (b_K > 1)

b_mat = (diag_pre_multiply(b_sd, b_cholesky) * z_b_mat)';
}

3.4 Model block

The model block consists of several distinct parts. We describe each of these separately.

In the first part of the model block, we evaluate the linear predictor for each of the M longitudinal submodels
at the respective observation times. We then increment the target with the resulting likelihood. To evaluate
the linear predictor we call a user-defined function which is defined in the functions {} block at the start of
the jm.stan file. This function takes the form:

/**
* Evaluate the linear predictor for the glmer submodel
*
* @param X Design matrix for fe
* @param Z Design matrix for re, for a single grouping factor
* @param Z_id Group indexing for Z
* @param gamma The intercept parameter
* @param beta Vector of population level parameters
* @param bMat Matrix of group level params
* @param shift Number of columns in bMat
* that correpond to group level params from prior glmer submodels
* @return A vector containing the linear predictor for the glmer submodel
*/
vector evaluate_eta(matrix X, vector[] Z, int[] Z_id, real gamma,

vector beta, matrix bMat, int shift) {
int N = rows(X); // num rows in design matrix

8

int K = rows(beta); // num predictors
int p = size(Z); // num group level params
vector[N] eta;

if (K > 0) eta = X * beta;
else eta = rep_vector(0.0, N);

for (k in 1:p)
for (n in 1:N)

eta[n] = eta[n] + (bMat[Z_id[n], k + shift]) * Z[k,n];

return eta;
}

Such that the code in our model block is the following:

model {
//---- Log-lik for longitudinal submodels
{

// declare linear predictors
vector[y_N[1]] y1_eta;
vector[y_N[2]] y2_eta;

// evaluate linear predictor for each long. submodel
y1_eta = evaluate_eta(y1_X, y1_Z, y1_Z_id, y1_gamma, y1_beta, b_mat, 0);
y2_eta = evaluate_eta(y2_X, y2_Z, y2_Z_id, y2_gamma, y2_beta, b_mat, b_KM[1]);

// increment the target with the log-lik
target += normal_lpdf(y1 | y1_eta, y1_aux);
target += normal_lpdf(y2 | y2_eta, y2_aux);

}
...

To evaluate the event submodel likelihood we must evaluate hi(Ti) for individuals who experienced the
event (i.e. di = 1) (i.e. the hazard at their event time) as well as the cumulative hazard

∫ Ti

0 hi(s)ds for all
individuals. Since we are going to evaluate the cumulative hazard using Gauss-Kronrod quadrature, this
means calculating the hazard hi(t) at 15 quadrature points between 0 and Ti for each individual i. To do this,
we have constructed the design matrices in R evaulated at the necessary times; these are passed to Stan’s
data block (not shown here) as e_Xq, y1_Xq, y2_Xq etc. In the code below there are several steps:

• In Step 1 we use the event submodel design matrices to evaluate the wT
i (t)γ part of the event

submodel’s linear predictor at the observed event times and the 15 quadrature points between 0 and Ti.
• The remainder of the event submodel’s linear predictor consists of the term corresponding to the

association structure:
∑M

m=1 αmηim(t). This involves the current value of the longitudinal submodel’s
linear predictor, so we must also evaluate the longitudinal submodel’s linear predictor at the event
times and the 15 quadrature points between 0 and Ti. This is shown in Step 2 of the code below.

• In Step 3 we evaluate the log baseline hazard at the event times and the 15 quadrature points between
0 and Ti.

• In Step 4 we combine the log baseline hazard with the event submodel linear predictor, that is, we
evaluate

log hi(t) = log h0(t) +
(
wT

i (t)γ +
M∑

m=1
αmηim(t)

)
• In Steps 5 and 6 the hazard evaluated at the event times is separated out from the hazard evaluated at

9

each of the quadrature points. The latter will be used in Step 7 to evaluate the approximate cumulative
hazard at the event time via the Gauss-Kronrod quadrature rule described in equation (12).

• In Step 7 we evaluate the log likelihood for the event submodel as

log p(Ti, di|bi,θ) = di ∗ log hi(Ti)−
∫ Ti

0
hi(s)ds

The first term in Step 7 is the log hazard contribution to the log likelihood for the event submodel.
The second term is the log survival contribution to the log likelihood for the event submodel. The latter
is obtained by summing over the quadrature points to get the approximate integral (i.e. cumulative
hazard). Note that the qwts vector already incorporates the necessary scaling such that the integral
is evaluated over limits (0, Ti) rather than (−1,+1). We increment the target with the resulting log
likelihood.

//----- Log-lik for event submodel (Gauss-Kronrod quadrature)
{

vector[nrow_y_Xq[1]] y1_eta_q;
vector[nrow_y_Xq[2]] y2_eta_q;
vector[nrow_e_Xq] e_eta_q;
vector[nrow_e_Xq] log_basehaz;
vector[nrow_e_Xq] ll_haz_q;
vector[Nevents] log_haz_etimes;
vector[Npat_times_qnodes] log_haz_qtimes;

// Step 1: event submodel linear predictor at event time and quadrature points
e_eta_q = e_Xq * e_beta;

// Step 2: long. submodel linear predictor at event time and quadrature points
y1_eta_q = evaluate_eta(y1_Xq, y1_Zq, y1_Zq_id, y1_gamma, y1_beta, b_mat, 0);
y2_eta_q = evaluate_eta(y2_Xq, y2_Zq, y2_Zq_id, y2_gamma, y2_beta, b_mat, b_KM[1]);

// Step 2 (continued): add on contribution from association structure to
// the event submodel linear predictor at event time and quadrature points
e_eta_q = e_eta_q + a_beta[1] * y1_eta_q + a_beta[2] * y2_eta_q;

// Step 3: log baseline hazard at event time and quadrature points
log_basehaz = basehaz_X * e_aux;

// Step 4: log hazard at event time and quadrature points
ll_haz_q = log_basehaz + e_eta_q;

// Step 5: log hazard at event times only
// (i.e. log hazard contribution to the likelihood)
log_haz_etimes = head(log_haz_q, Nevents);

// Step 6: log hazard at quadrature points only
log_haz_qtimes = tail(log_haz_q, Npat_times_qnodes);

// Step 7: log likelihood for event submodel
target += sum(log_haz_etimes) - dot_product(qwts, exp(log_haz_qtimes));

}

We then increment the target with the log priors for each of the intercepts, coefficients, auxiliary parameters
(including coefficients for the B-splines baseline hazard), and group-specific terms (i.e. individual-level random

10

effects):

//----- Log-priors

// intercepts for long. submodels
target += normal_lpdf(y1_gamma |

y_prior_mean_for_intercept[1], y_prior_scale_for_intercept[1]);
target += normal_lpdf(y2_gamma |

y_prior_mean_for_intercept[2], y_prior_scale_for_intercept[2]);

// coefficients for long. submodels
target += normal_lpdf(y1_z_beta | 0, 1);
target += normal_lpdf(y2_z_beta | 0, 1);

// coefficients for event submodel
target += normal_lpdf(e_z_beta | 0, 1);
target += normal_lpdf(a_z_beta | 0, 1);

// residual error SDs for long. submodels
target += normal_lpdf(y1_aux_unscaled | 0, 1);
target += normal_lpdf(y2_aux_unscaled | 0, 1);

// b-spline coefs for baseline hazard
target += normal_lpdf(e_aux_unscaled | 0, 1);

// group level terms
// sds
target += student_t_lpdf(b_sd | b_prior_df, 0, b_prior_scale);
// primitive coefs
target += normal_lpdf(to_vector(z_b_mat) | 0, 1);
// corr matrix
if (b_K > 1)

target += lkj_corr_cholesky_lpdf(b_cholesky | b_prior_regularization);
}

4 Application

4.1 Data

In order to make this notebook freely available we use a motivating example based on a publically accessible
dataset. The Mayo Clinic’s widely used primary biliary cirrhosis (PBC) data contains 312 individuals
with primary biliary cirrhosis, who participated in a randomised placebo controlled trial of D-penicillamine
conducted at the Mayo Clinic between 1974 and 1984 [18]. In our secondary analysis of this trial data, our
primary research is not concerned with the efficacy of the randomised treatment but rather understanding
how the clinical biomarker histories for these patients are associated with their overall survival. Specifically,
we focus on the associations between two repeatedly measured clinical biomarkers, log serum bilirubin and
serum albumin, and the risk of death. Given that the joint modelling methods are computationally intensive
we restrict our analyses to a small random subset of just 40 patients from the PBC dataset. This ensures that
the computation time for the joint models described in later sections are kept to a minimum and therefore
this notebook can be compiled in a relatively short time. However, this also means that the clinical findings
from this analysis should not to be overinterpreted. Rather, this notebook aims to simply demonstrate the
joint modelling framework and describe how these models can be estimated using Stan.

11

The PBC data are contained in two separate data frames, each saved as an RDS object. The first data frame
(saved as “Data/pbcLong.rds”), contains multiple-row per patient longitudinal biomarker information, as
shown in
head(pbcLong)

id age sex trt year logBili albumin platelet
1 1 58.76523 f 1 0.0000000 2.67414865 2.60 190
2 1 58.76523 f 1 0.5256674 3.05870707 2.94 183
3 2 56.44627 f 1 0.0000000 0.09531018 4.14 221
4 2 56.44627 f 1 0.4982888 -0.22314355 3.60 188
5 2 56.44627 f 1 0.9993155 0.00000000 3.55 161
6 2 56.44627 f 1 2.1026694 0.64185389 3.92 122

while the second data frame (saved as “Data/pbcSurv.rds”), contains single-row per patient survival informa-
tion, as shown in
head(pbcSurv)

id age sex trt futimeYears status death
1 1 58.76523 f 1 1.095140 2 1
3 2 56.44627 f 1 14.151951 0 0
12 3 70.07255 m 1 2.770705 2 1
16 4 54.74059 f 1 5.270363 2 1
23 5 38.10541 f 0 4.120465 1 0
29 6 66.25873 f 0 6.852841 2 1

The variables included across the two datasets can be defined as follows:

• age in years
• albumin serum albumin (g/dl)
• logBili logarithm of serum bilirubin
• death indicator of death at endpoint
• futimeYears time (in years) between baseline and the earliest of death, transplantion or censoring
• id numeric ID unique to each individual
• platelet platelet count
• sex gender (m = male, f = female)
• status status at endpoint (0 = censored, 1 = transplant, 2 = dead)
• trt binary treatment code (0 = placebo, 1 = D-penicillamine)
• year time (in years) of the longitudinal measurements, taken as time since baseline)

4.2 Estimation using the simplified jm.stan file

We fit a multivariate joint model to the two longitudinal biomarkers, log serum bilirubin and serum albumin,
and time-to-death. Note that patients are censored if they had a transplant prior to death (here we ignore
the fact that this is likely to be informative censoring). We fit a linear mixed model (identity link, normal
distribution) for each biomarker with a patient-specific intercept and linear slope but no other covariates. In
the event submodel we include gender (sex) and treatment (trt) as baseline covariates. Each biomarker
is assumed to be associated with the log hazard of death at time t via it’s expected value at time t (i.e. a
current value association structure).

To save needing to carry out any data manipulation steps we instead used the stan_jm modelling function in
rstanarm to generate the R list for passing to rstan. This data is saved as an RDS object and supplied
with the notebook (“Stan/standata.rds”). In addition, a function to generate a list of initial values has also
been supplied as an RDS object with the notebook (“Stan/staninit.rds”). Of course, the stan file contain-
ing the model is also supplied (“Stan/jm.stan”). We can therefore estimate this model using the rstan package:

12

standata <- readRDS("Stan/standata.rds")
staninit <- readRDS("Stan/staninit.rds")
mod1 <- with_filecache(

stan(
file = "Stan/jm.stan",
data = standata,
init = function() staninit,
chains = 2, seed = 12345),

filename = "mod1.rds")

Since our primary interest is in the association between the current value of each of the biomarkers (log serum
bilirubin and serum albumin) and the hazard of death, we focus on the estimated association parameters.
The summary of the posterior distribution for each of the association parameters follows:

print(mod1, pars = "a_beta")

Inference for Stan model: jm.
2 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=2000.
##
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
a_beta[1] 0.72 0.01 0.29 0.17 0.53 0.72 0.92 1.29 2000 1
a_beta[2] -3.23 0.03 0.75 -4.77 -3.66 -3.17 -2.72 -1.90 752 1
##
Samples were drawn using NUTS(diag_e) at Wed Nov 29 18:17:42 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

We see that a one unit increase in log serum bilirubin is associated with a 0.72 (95% CrI: 0.17 to 1.29) unit
increase in the log hazard of death, equivalent to a 2.05-fold (95% CrI: 1.19 to 3.63) increase in the hazard of
death. Similarly, a one unit increase in serum albumin is associated with a 3.23 (95% CrI: 1.90 to 4.77) unit
decrease in the log hazard of death. These estimates are broadly in line with what we would expect from a
clinical perspective; that is, that higher serum bilirubin is associated with worse patient outcomes (i.e. higher
risk of mortality), whilst higher serum albumin is associated with better patient outcomes (i.e. lower risk
of mortality). However, recall that we have estimated this model with a very small dataset only used for
demonstration purposes. Moreover, the number of mortality events (N = 29) is even less than the number of
patients since some patients are censored.

4.3 Estimation using the joint modelling functionality in rstanarm

The jm.stan file provided with this notebook is a simplified version of the Stan code underlying the stan_jm
modelling function in the rstanarm package. However, estimating the model using the rstanarm provides us
with much nicer output (for example, meaningful variable names!) as well as a broad range of post-estimation
functionality, including model diagnostics, posterior predictions, dynamic predictions and more.

To see this, we can use the development version of rstanarm with joint modelling functionality to refit our
model, this time using stan_jm with the customary R formula syntax and data frames:

mod2 <- with_filecache(
stan_jm(

formulaLong = list(
logBili ~ year + (year | id),

13

albumin ~ year + (year | id)),
formulaEvent = survival::Surv(futimeYears, death) ~ sex + trt,
dataLong = pbcLong, dataEvent = pbcSurv,
time_var = "year", assoc = "etavalue", basehaz = "bs",
chains = 2, seed = 12345),

filename = "mod2.rds")

We can now examine the output from the fitted model, for example

print(mod2)

stan_jm
formula (Long1): logBili ~ year + (year | id)
family (Long1): gaussian [identity]
formula (Long2): albumin ~ year + (year | id)
family (Long2): gaussian [identity]
formula (Event): survival::Surv(futimeYears, death) ~ sex + trt
baseline hazard: bs
assoc: etavalue (Long1), etavalue (Long2)

##
Longitudinal submodel 1: logBili
Median MAD_SD
(Intercept) 0.669 0.180
year 0.227 0.044
sigma 0.354 0.017
##
Longitudinal submodel 2: albumin
Median MAD_SD
(Intercept) 3.518 0.085
year -0.160 0.025
sigma 0.290 0.013
##
Event submodel:
Median MAD_SD exp(Median)
(Intercept) 6.751 2.887 855.218
sexf -0.148 0.680 0.863
trt -0.503 0.484 0.605
Long1|etavalue 0.798 0.295 2.221
Long2|etavalue -3.065 0.899 0.047
b-splines-coef1 -0.889 1.070 NA
b-splines-coef2 0.547 0.925 NA
b-splines-coef3 -2.623 1.240 NA
b-splines-coef4 -0.441 1.751 NA
b-splines-coef5 -1.226 1.777 NA
b-splines-coef6 -2.576 1.906 NA
##
Group-level error terms:
Groups Name Std.Dev. Corr
id Long1|(Intercept) 1.2605
Long1|year 0.1939 0.51
Long2|(Intercept) 0.5044 -0.64 -0.52
Long2|year 0.1028 -0.60 -0.82 0.47

14

Num. levels: id 40
##
Sample avg. posterior predictive distribution
of longitudinal outcomes:
Median MAD_SD
Long1|mean_PPD 0.588 0.030
Long2|mean_PPD 3.343 0.023
##

For info on the priors used see help('prior_summary.stanreg').

or we can examine the summary output for the association parameters alone:

summary(mod2, pars = "assoc")

##
Model Info:
##
function: stan_jm
formula (Long1): logBili ~ year + (year | id)
family (Long1): gaussian [identity]
formula (Long2): albumin ~ year + (year | id)
family (Long2): gaussian [identity]
formula (Event): survival::Surv(futimeYears, death) ~ sex + trt
baseline hazard: bs
assoc: etavalue (Long1), etavalue (Long2)
algorithm: sampling
priors: see help('prior_summary')
sample: 2000 (posterior sample size)
num obs: 304 (Long1), 304 (Long2)
num subjects: 40
num events: 29 (72.5%)
groups: id (40)
runtime: 1.1 mins
##
Estimates:
mean sd 2.5% 25% 50% 75% 97.5%
Assoc|Long1|etavalue 0.801 0.301 0.214 0.595 0.798 0.992 1.416
Assoc|Long2|etavalue -3.128 0.898 -5.114 -3.709 -3.065 -2.505 -1.515
##
Diagnostics:
mcse Rhat n_eff
Assoc|Long1|etavalue 0.007 1.004 2000
Assoc|Long2|etavalue 0.026 1.003 1238
##
For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

We can see that the estimated association parameters are similar to those obtained from the model in the pre-
vious section. However, we can now also access a range of post-estimation functions (described in the stan_jm
and related help documentation; see for example help(posterior_traj) or help(posterior_survfit)).
As an example, let’s plot the predicted trajectories for each biomarker and the predicted survival function for
three selected individuals in the dataset using stan_jm post-estimation functions:

15

p1 <- posterior_traj(mod2, m = 1, ids = 6:8)
p2 <- posterior_traj(mod2, m = 2, ids = 6:8)
p3 <- posterior_survfit(mod2, ids = 6:8, draws = 200)
pp1 <- plot(p1, plot_observed = TRUE, vline = TRUE)
pp2 <- plot(p2, plot_observed = TRUE, vline = TRUE)
plot_stack_jm(yplot = list(pp1, pp2), survplot = plot(p3))

6 7 8

0 5 10 0 5 10 0 5 10

−1

0

1

−0.5

0.0

0.5

1.0

−0.6

−0.3

0.0

Time (year)

Lo
ng

. r
es

po
ns

e
(lo

gB
ili

)

6 7 8

0 5 10 0 5 10 0 5 10

2.5

3.0

3.5

4.0

3.5

4.0

3.25

3.50

3.75

4.00

4.25

Time (year)

Lo
ng

. r
es

po
ns

e
(a

lb
um

in
)

6 7 8

0 5 10 0 5 10 0 5 10
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time (year)

E
ve

nt
 fr

ee
 p

ro
ba

bi
lit

y

Here we can see the strong relationship between the underlying values of the biomarkers and mortality.
Patient 8 who, relative to patients 6 and 7, has a higher underlying value for log serum bilirubin and a lower
underlying value for serum albumin at the end of their follow up has a far worse predicted probability of
survival.

16

5 Discussion

In this notebook we have introduced the formulation of a shared parameter joint model for longitudinal and
time-to-event data. The formulation of the joint model can allow for multiple longitudinal biomarkers along
with a terminating event. The association between the longitudinal and event processes can be parameterised
in a variety of ways, but here we have focussed on the so-called current value association structure which
serves as the simplest and natural starting point.

The aim of this notebook was to introduce some of the ideas underpinning the estimation of these joint models
in Stan. One key feature of the Stan code that we have tried to describe in detail is the implementation of
the Gauss-Kronrod quadrature rule. The Gauss-Kronrod quadrature rule is required to approximate the
cumulative hazard in the likelihood of the event submodel. This aspect makes evaluating the log likelihood for
the event submodel more computationally intensive than if there were a closed-form solution to the integral.
In addition, the models are computationally intensive due to the relatively large number of group-specific
parameters that often need to be estimated. Nonetheless, estimating joint models under a Bayesian framework
can provide a number of benefits. The specification of complex association structures can be made much
easier. Furthermore, a Bayesian approach can lead more naturally to dynamic predictions. For these, and
other reasons, we believe it is of interest to try and optimise the estimation of these models in Stan. The
hope is that by describing the Stan code in some detail as part of this notebook, those reading it will have
the opportunity to provide guidance on how increases in speed, efficiency, or numerical stability might be
achieved.

6 Acknowledgements

Much of the joint modelling functionality that has been contributed to the rstanarm package has been built
upon code that was already included in that package, and that code was written primarily by Ben Goodrich
and Jonah Gabry [12]. We are also grateful to them for their ongoing support in helping to get the joint
modelling functionality up and running in rstanarm.

7 References

1. Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data.
Biostatistics 2000;1(4):465-80.

2. Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error.
Biometrics 1997;53(1):330-9.

3. Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: An overview. Stat
Sinica 2004;14(3):809-34.

4. Gould AL, Boye ME, Crowther MJ, Ibrahim JG, Quartey G, Micallef S, et al. Joint modeling of
survival and longitudinal non-survival data: current methods and issues. Report of the DIA Bayesian
joint modeling working group. Stat Med. 2015;34(14):2181-95.

5. Rizopoulos D. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R CRC
Press; 2012.

6. Liu G, Gould AL. Comparison of alternative strategies for analysis of longitudinal trials with dropouts.
J Biopharm Stat 2002;12(2):207-26.

7. Prentice RL. Covariate Measurement Errors and Parameter-Estimation in a Failure Time Regression-
Model. Biometrika 1982;69(2):331-42.

8. Baraldi AN, Enders CK. An introduction to modern missing data analyses. J Sch Psychol 2010;48(1):5-
37.

9. Philipson PM, Ho WK, Henderson R. Comparative review of methods for handling drop-out in
longitudinal studies. Stat Med 2008;27(30):6276-98.

17

10. Pantazis N, Touloumi G. Bivariate modelling of longitudinal measurements of two human immunodefi-
ciency type 1 disease progression markers in the presence of informative drop-outs. Applied Statistics
2005;54:405-23.

11. Taylor JM, Park Y, Ankerst DP, et al. Real-time individual predictions of prostate cancer recurrence
using joint models. Biometrics 2013;69(1):206-13.

12. Stan Development Team. rstanarm: Bayesian applied regression modeling via Stan. R package version
2.14.1. http://mc-stan.org/. 2016.

13. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation
for Statistical Computing; 2015.

14. Crowther MJ, Lambert PC, Abrams KR. Adjusting for measurement error in baseline prognostic
biomarkers included in a time-to-event analysis: a joint modelling approach. BMC Med Res Methodol
2013;13.

15. Hickey GL, Philipson P, Jorgensen A, Kolamunnage-Dona R. Joint modelling of time-to-event and multi-
variate longitudinal outcomes: recent developments and issues. BMC Med Res Methodol 2016;16(1):117.

16. Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal
outcomes and a time-to-event. Stat Med. 2011;30(12):1366-80.

17. Laurie DP. Calculation of Gauss-Kronrod quadrature rules. Math Comput 1997;66(219):1133-45.
18. Therneau T, Grambsch P. Modeling Survival Data: Extending the Cox Model Springer-Verlag, New

York; 2000. ISBN: 0-387-98784-3

18

http://mc-stan.org/

	Introduction
	Model formulation
	Longitudinal submodel(s)
	Event submodel
	Association structures
	Conditional independence assumption
	Log posterior distribution

	Stan code
	Data and transformed data blocks
	Parameters block
	Transformed parameters block
	Model block

	Application
	Data
	Estimation using the simplified jm.stan file
	Estimation using the joint modelling functionality in rstanarm

	Discussion
	Acknowledgements
	References

