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Abstract 

Joint modelling of longitudinal and time-to-event data is a fertile area of research. The last 

two decades has seen significant attention paid to the development of the methodology. 

More recently, there has been increased uptake of the methods in applied research. 

Nonetheless, there is still scope for the wider use of joint modelling approaches. This thesis 

contributes to the uptake of joint modelling in applied health research through three key 

areas: methodological development, software implementation, and application. Chapter 2 

of the thesis provides a review of the methodological framework for the joint modelling of 

longitudinal and time-to-event data. Chapters 3 and 4 of the thesis present research projects 

demonstrating the application of the two most common joint modelling approaches. First, 

in Chapter 3, a shared parameter joint model with competing risks is applied in an 

epidemiological and public health project related to disasters, death and disability. Second, 

in Chapter 4, a latent class joint model is applied in a clinical research project related to 

end-stage kidney disease. Chapter 5 of the thesis describes the development of new 

software for estimating joint longitudinal and time-to-event models under a Bayesian 

framework. The software package provides a user-friendly interface for fitting a variety of 

shared parameter joint models, including univariate (one longitudinal outcome) or 

multivariate (more than one longitudinal outcome) joint models, different longitudinal data 

types (continuous, binary, counts), multilevel data structures, and a range of association 

structures. In Chapter 6, the development of novel methodology for fitting joint models in 

the presence of multilevel data structures is described in detail. Lastly, in Chapter 7, the 

overall findings from the thesis and potential avenues for future work are discussed. 
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Chapter 1:  Overview of the thesis 

 Introduction and motivations 

Joint, or simultaneous, modelling of longitudinal and time-to-event data generating 

processes is the focus of this thesis. This refers to methodology for modelling the evolution 

of a repeatedly measured clinical biomarker marker alongside an event process. 

Commonly, this is achieved by specifying a joint likelihood formulation for longitudinal 

and time-to-event outcomes.  

There are a number of potential motivations for using a joint modelling approach. First, one 

may be interested in the effect of the longitudinal biomarker on the event but wishes to 

allow for the discrete-time, imperfect measurement of the biomarker. Second, one may be 

interested in the longitudinal process, but wishes to account for informative dropout due to 

occurrence of the event. Third, one may be interested in exploring the structure of the 

association between the longitudinal and event processes. Lastly, one may wish to develop 

a prognostic model for the risk of the event whilst utilising the time-varying information 

related to the biomarker. Each of these potential motivations will be revisited and described 

in greater detail in Chapter 2. 

Joint modelling is an extremely fertile area of research. The earliest research papers 

describing joint modelling predominantly focussed on a single continuous longitudinal 

outcome and a single time-to-event outcome (Faucett and Thomas, 1996; Wulfsohn and 

Tsiatis, 1997; Henderson et al., 2000). However, since those early papers, there have been 

a vast array of methodological developments. Joint modelling approaches for longitudinal 

and time-to-event data have been extended to handle a wide variety of complex data 

structures and research questions. This includes, for example, competing events (Li et al., 

2009; Williamson et al., 2008; Andrinopoulou et al., 2014; Lu, 2017), recurrent events 

(Król et al., 2016), non-normally distributed longitudinal biomarkers (Faucett et al., 1998; 

1



Brilleman et al., 2016), accelerated failure time models (Tseng et al., 2005), multi-state 

models (Dantan et al., 2011; Ferrer et al., 2016), latent class joint models (Garre et al., 

2007; Lin et al., 2002; Proust-Lima et al., 2014), multiple longitudinal biomarkers (Proust-

Lima et al., 2009; Rizopoulos and Ghosh, 2011), a variety of association structures 

(Crowther, Lambert, et al., 2013; Mauff et al., 2017), and more.  

Although the majority of joint modelling research has been methodological in nature, there 

has also been a growing uptake of the methodology in applied research. Joint modelling 

approaches are now being used in applied studies published in both clinical and 

epidemiological journals. Nonetheless, there is still much scope for the wider use of joint 

modelling approaches in applied health research. In a relatively recent review of joint 

modelling methods and software Lawrence Gould et al. (2015) described several clinical 

applications of joint models. However, they also highlighted the important issue that most 

published articles relating to, or using, joint models have so far appeared in the statistical 

literature, thereby limiting their exposure to applied researchers.  

Accordingly, this thesis will aim to contribute to the wider uptake of joint modelling 

methodology in applied health research. This aim will be achieved through three main 

objectives, however, before defining those objectives, the motivations underlying them will 

be described. 

The first objective of this thesis is motivated by the need to contribute to a wider awareness 

of joint modelling methods amongst applied researchers. Many applied researchers may 

not yet be aware of joint modelling methodology since the majority of publications have 

appeared in the statistical literature. As readers of epidemiological and clinical medicine 

journals become more familiar with the methodology, and aware of the benefits that joint 

modelling approaches can provide, they are more likely to consider using the methods in 

their own studies. By publishing applied projects in clinical, epidemiological or public 

health journals this thesis will help demonstrate how joint modelling methods can be used 

to answer research questions of importance to health.  

 The second objective of this thesis is motivated by the need for further methodological 

developments in the area of joint modelling. Joint modelling methodology has been 

developing at a rapid pace. Nonetheless, there are still a number of scenarios encountered 

in practice for which existing methods may not be appropriate. One such scenario is the 

presence of multilevel data structures. For example, in an oncology trial, repeated 
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measurements of a clinical biomarker might be observed for multiple tumour lesions 

clustered within each patient. Alternatively, in the analysis of a registry-based dataset, 

longitudinal and event-time data might be measured on patients clustered within clinics or 

hospitals. In both of these settings, there are additional clustering factors beyond just that 

of the patient. Such multilevel data structures are commonly encountered in health research 

but have not yet been considered in the joint modelling context. Accordingly, there is scope 

for the development of new methodology for the joint modelling of longitudinal and time-

to-event data in the presence of complex data structures commonly encountered in health 

research.  

The third objective of this thesis is motivated by the need to provide a broader range of 

user-friendly software implementations for joint models, particularly for those methods that 

extend beyond the standard joint model formulation. Many of the proposed methodological 

extensions to standard joint models have not been implemented in user-friendly software. 

Some examples of methodological developments for which there are currently only limited, 

or recently available, user-friendly software implementations are: non-normally distributed 

biomarkers, multivariate joint models, multilevel data structures, and complex association 

structures (e.g. cumulative effects, lagged effects, or interactions between biomarkers). If 

novel methods are not implemented in user-friendly software, then there is a much smaller 

likelihood that they will be adopted by applied researchers.  

 Aims 

The broad aim of this thesis is to help facilitate, as well as actively contribute to, the wider 

uptake of joint modelling methodology in applied health research.  

 Objectives 

The aim of the thesis will be achieved through three main objectives: 

 Promote the use of joint modelling by undertaking applied research projects that use 

joint modelling methodology to answer important health research questions, and seek 

to publish those analyses in clinical, epidemiological or public health journals. 

 Contribute to the development of novel joint modelling methodology by extending the 

methods to data structures commonly encountered in applied health research but that 

are not yet accommodated within the published joint modelling literature. 
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 Facilitate the ease of access to joint modelling methods by developing user-friendly, 

open-source, software to fit joint models under a Bayesian framework.  

 Structure of the thesis 

This thesis is organised as follows. The following chapter (Chapter 2) introduces the 

methodological framework for the joint modelling of longitudinal and time-to-event data. 

It highlights the key methodological developments and gaps in the literature, focussing on 

those that are most relevant to the content of later chapters of this thesis. 

Chapters 3 and 4 each present an applied research project that used joint modelling 

methodology. The main content of each chapter is an applied research paper describing the 

project. The first applied project, in Chapter 3, is based on a shared parameter joint 

modelling approach and explored the associations between disaster exposure, disability, 

and risk of death in a cohort of older Americans. The project had both an epidemiological 

and public health focus and was published in 2016 in Social Science and Medicine. The 

second applied project, in Chapter 4, is based on a latent class joint modelling approach 

and explored associations between longitudinal changes in body mass index (BMI) and the 

risk of death or transplant in Australian and New Zealand end-stage kidney disease patients 

undergoing haemodialysis. The paper for this project was recently submitted for 

publication. 

Chapter 5 describes the development of new functionality within the rstanarm (Brilleman 

et al., 2018; Stan Development Team, 2017a) R package for Bayesian estimation of joint 

longitudinal and time-to-event models. These developments were motivated by a lack of 

user-friendly software for fitting multivariate joint models (i.e. more than one longitudinal 

biomarker), non-normally distributed longitudinal biomarkers (e.g. binary or counts), or 

data with a multilevel structure (i.e. clustering factors beyond just that of the individual). 

The primary content of the chapter is a published conference paper that describes the main 

features of the software package. The chapter also includes a qualitative comparison of the 

software with the features included in other packages currently available for fitting 

multivariate joint models. Lastly, the chapter includes a simulation study to assess the 

performance of the new joint modelling software. The simulation study required the 

development of two additional R packages; one for simulating complex time-to-event (i.e. 

survival) data based on the method of Crowther and Lambert (2013), and another for 
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simulating joint longitudinal and time-to-event data. Therefore, the development of these 

two new R packages is also described. 

Chapter 6 describes a methodological project. The project was motivated by a clinical study 

in which the aim was to explore the association between tumour burden and progression-

free survival in East-Asian non-small cell lung cancer (NSCLC) patients initiating 

treatment. In this study, the tumour burden for a patient was defined as a summary of the 

sizes of the target tumour lesions. Since a patient could have more than one tumour lesion, 

and each lesion was tracked over time, the data for the study had a multilevel hierarchical 

structure; observation times (level 1) were clustered within lesions (level 2) which were 

clustered within patients (level 3). The study therefore required the development of novel 

methodology (and software) for the joint modelling of longitudinal and time-to-event data 

when there are clustering factors beyond just that of the patient. The main content of the 

chapter is a paper that has been recently submitted and is currently under review. 

Chapter 7, the final chapter of the thesis, contains a discussion of the overall findings and 

outlines possible avenues for future work. 
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Chapter 2:  Background to the joint modelling of longitudinal 

and time-to-event data 

 Chapter introduction 

This chapter provides an introduction to the methodological framework for the joint 

modelling of longitudinal and time-to-event data. The intention of this chapter is not to 

provide an exhaustive review of the joint modelling literature, since a number of reviews 

have been published elsewhere by previous authors (Tsiatis and Davidian, 2004; 

Rizopoulos, 2012b; Lawrence Gould et al., 2015; Proust-Lima et al., 2014; Hickey et al., 

2016). Rather, the intention of this chapter is to introduce the methods underpinning the 

estimation of joint models and to highlight important developments and gaps in the 

literature, focussing on those that are of most relevance to the content of this thesis. 

Section 2.2 begins by describing the context for joint modelling; that is, the situations in 

which we might observe both longitudinal and time-to-event data and the types of research 

questions that might benefit from modelling both outcome types simultaneously. Section 

2.3 describes the formulation of a shared parameter joint model, starting with the simplest 

specification and then followed by a number of possible extensions that have been 

discussed in the literature. Section 2.4 introduces latent class joint models, and explains 

their differences to the shared parameter joint modelling approach. Section 2.5 summarises 

the various estimation approaches that have been used for joint models including classical, 

Bayesian, and novel two-stage estimation approaches. 

 Context 

Let us assume we observe repeated measurements of a clinical biomarker, over time, for a 

sample of patients drawn from some target population of interest. Figure 1, for example, 

shows observed longitudinal measurements (i.e. observed "trajectories") of log serum 
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bilirubin for a sample of eight patients with primary biliary cirrhosis (the data are taken 

from the PBC dataset that will be introduced in Chapter 5). Along with observing the 

longitudinal biomarker measurements for these patients, we may also observe the patient-

specific time from a defined origin (e.g. diagnosis of the disease) until a terminating clinical 

event such as death. Accordingly, solid lines in Figure 1 are used for representing those 

patients who were still alive at the end of the follow up period, while dashed lines are used 

for those patients who died.  

An important characteristic of Figure 1 is that we observe between-patient variation in the 

longitudinal trajectories for log serum bilirubin, with some patients showing an increase in 

the biomarker over time, others decreasing, and some remaining stable. Moreover, there is 

variation between patients in terms of the frequency and timing of the longitudinal 

measurements.  

From the perspective of clinical risk prediction, we may be interested in asking whether 

between-patient variation in the log serum bilirubin trajectories provides meaningful 

 

Figure 1. Observed longitudinal trajectories of log serum bilirubin for eight primary 

biliary cirrhosis patients. 

Notes. Solid lines are used for those patients who were still alive at the end of follow 

up, while dashed lines are used for those patients who died. 
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prognostic information that can help us differentiate patients with regard to some clinical 

event of interest, such as death. Alternatively, from an epidemiological perspective we may 

wish to explore the potential for etiological associations between changes in log serum 

bilirubin and mortality. Joint modelling approaches provide us with a framework under 

which we can begin to answer these types of clinical and epidemiological questions.  

More formally, the motivations for undertaking a joint modelling analysis of longitudinal 

and time-to-event data might include one or more of the following: 

 One may be interested in how underlying changes in the biomarker influence the 

occurrence of the event. However, including the observed biomarker measurements 

directly in a time-to-event model as time-varying covariates poses several problems. 

For example, if the widely used Cox proportional hazards model is assumed for the 

time-to-event model then biomarker measurements need to be available for all patients 

at all failure times, which is unlikely to be the case (Tsiatis and Davidian, 2004). If 

simple methods of imputation are used to deal with this missing data challenge, such as 

the "last observation carried forward" method, then these are likely to induce bias (Liu 

and Gould, 2002). Furthermore, the observed biomarker measurements may be subject 

to measurement error and therefore their inclusion as time-varying covariates may 

result in biased and inefficient estimates. In most cases, the measurement error will 

result in parameter estimates which are shrunk towards the null (Prentice, 1982). On 

the other hand, joint modelling approaches allow us to estimate the association between 

the biomarker (or some function of the biomarker trajectory, such as rate of change in 

the biomarker) and the risk of the event, whilst allowing for both the discrete time and 

measurement-error aspects of the observed biomarker. 

 One may be interested primarily in the evolution of the clinical biomarker but may wish 

to account for what is known as informative dropout. If the values of future 

(unobserved) biomarker measurements are associated with the occurrence of the 

terminating event, then those unobserved biomarker measurements will be "missing not 

at random" (Baraldi and Enders, 2010; Philipson et al., 2008). In other words, 

biomarker measurements for patients who have an event will differ from those who do 

not have an event. Under these circumstances, inference based solely on observed 

measurements of the biomarker, under a “missing at random” (ignorability) assumption 

will be subject to bias. A joint modelling approach can help to adjust for informative 

dropout and has been shown to reduce bias in estimates of parameters quantifying 
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longitudinal changes in the biomarker (Henderson et al., 2000; Pantazis et al., 2005; 

Philipson et al., 2008). Nonetheless, it is worth highlighting that in practice this benefit 

of joint modelling is likely to depend strongly on untestable assumptions, such as a 

correctly specified model for the non-ignorable missing data mechanism. 

 Joint models are naturally suited to the task of dynamic risk prediction. For example, 

joint modelling approaches have been used to develop prognostic models where 

predictions of event risk can be updated as new longitudinal biomarker measurements 

become available. Taylor et al. (2013) jointly modelled longitudinal measurements of 

prostate-specific antigen (PSA) and time to clinical recurrence of prostate cancer. The 

joint model was then used to develop a web-based calculator which could provide real-

time predictions of the probability of recurrence based on a patient's up to date PSA 

measurements. 

 Shared parameter joint models 

2.3.1 Specification 

The most common joint modelling approach appearing in the literature to date is the so-

called shared parameter joint model. A standard shared parameter joint model consists of 

two related submodels, one for each of the longitudinal and time-to-event outcomes. These 

are therefore commonly referred to as the longitudinal submodel and the event submodel. 

The submodels are linked through shared individual-specific parameters, modelled as 

individual-level random effects, which can be incorporated into the model in a number of 

ways.  

The most common formulation of a shared parameter joint model is one in which the log 

hazard (i.e. instantaneous rate) of the time-to-event outcome at time 𝑡 is assumed to be 

linearly associated with the expected value of the longitudinal biomarker at time 𝑡. The two 

submodels under this formulation are described next. 

Longitudinal submodel 

Assume 𝑦𝑖𝑗 = 𝑦𝑖(𝑡𝑖𝑗) corresponds to the longitudinal values of a biomarker observed at the 

𝑗𝑡ℎ (𝑗 = 1, … , 𝑛𝑖) time point, 𝑡𝑖𝑗, for the 𝑖𝑡ℎ (𝑖 = 1,… ,𝑁) individual in a random sample 

of 𝑁 individuals. Although the longitudinal biomarker is observed at discrete time points, 

these are assumed to be error-prone measurements of an underlying continuously evolving 
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process. Therefore, the biomarker is modelled using a linear mixed model that can be 

specified as  

 

𝑦𝑖(𝑡) = 𝜇𝑖(𝑡) + 𝜀𝑖(𝑡) 

𝜇𝑖(𝑡) = 𝒙𝑖
′(𝑡)𝜷 + 𝒛𝑖

′(𝑡)𝒃𝑖 

(1) 

where 𝜇𝑖(𝑡) is the expected value of the biomarker for individual 𝑖 at time 𝑡, 𝜀𝑖(𝑡) is a 

random (measurement) error term assumed to be drawn from a normal distribution with 

mean zero and variance σy
2, and 𝒙𝑖(𝑡) and 𝒛𝑖(𝑡) are vectors of covariates, possibly time-

dependent, with associated vectors of population-level (i.e. fixed effects) parameters 𝜷 and 

individual-specific (i.e. random effects) parameters 𝒃𝑖. The individual-specific parameters 

are assumed to be normally distributed, with 𝒃𝑖 ~ 𝑁(0, 𝚺b) for some unstructured variance-

covariance matrix 𝚺𝑏.  

Event submodel 

Let 𝑇𝑖
∗ denote the event time for individual 𝑖, which may or may not be observed due to 

right-censoring. Therefore, in practice, we observe 𝑇𝑖 = min (𝑇𝑖
∗, 𝐶𝑖) for individual 𝑖, where 

𝐶𝑖 is the right-censoring time. An event indicator can be defined as 𝑑𝑖 = 𝐼(𝑇𝑖
∗ ≤ 𝐶𝑖), where 

𝐼(. ) is the indicator function taking a value of 1 if 𝑇𝑖
∗ ≤ 𝐶𝑖 or 0 otherwise.  

The hazard of the event at time 𝑡 is the instantaneous rate of occurrence for the event at 

time 𝑡. Mathematically, it is defined as  

 ℎ𝑖(𝑡) = lim
Δ𝑡 → 0

𝑃(𝑡 ≤ 𝑇𝑖
∗ < 𝑡 + Δ𝑡 | 𝑇𝑖

∗ > 𝑡)

Δ𝑡
 (2) 

where Δ𝑡 is the width of some small time interval. The numerator in equation (2) is the 

conditional probability of the individual experiencing the event during the time interval 

[𝑡, 𝑡 + Δ𝑡), given that they were still at risk of the event at time 𝑡. The denominator in the 

equation converts the conditional probability to a rate per unit of time. As Δ𝑡 approaches 

the limit, the width of the interval approaches zero and the instantaneous event rate is 

obtained (Rodríguez, 2007). 

The most common approach in the joint modelling literature has been to model the hazard 

of the event using a proportional hazards model of the form 
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 ℎ𝑖(𝑡) = ℎ0(𝑡) exp{𝒘𝑖
′(𝑡)𝜸 + 𝛼𝜇𝑖(𝑡)} (3) 

where ℎ𝑖(𝑡) is the hazard of the event for individual 𝑖 at time 𝑡, ℎ0(𝑡) is the baseline hazard 

at time 𝑡 (i.e. the hazard for individuals with a value of zero for all covariates in the model), 

and 𝒘𝑖(𝑡) is a vector of covariates, possibly time-dependent, with associated vector of 

population-level (i.e. fixed effects) parameters 𝜸. The parameter 𝛼 is also a population-

level (i.e. fixed effect) parameter termed the association parameter in joint modelling 

because it quantifies the magnitude of association between the longitudinal and event 

outcomes. 

Association structure 

The term 𝛼𝜇𝑖(𝑡) in equation (3) is commonly referred to as the association structure, since 

it induces an association between the longitudinal and event processes. Specifically, the 

association structure in equation (3) posits an association between the (log) hazard of the 

event at time 𝑡 and the current expected value of the biomarker, also evaluated at time 𝑡; 

hence it is often referred to as a current value association structure. 

It is noteworthy that the formulation in equation (3) assumes an association between the 

log hazard of the event and the expected value of the biomarker, rather than the observed 

value of the biomarker. This is important for two reasons. First, although the biomarker is 

observed intermittently at discrete observation times, the joint model formulation assumes 

it evolves in continuous time and therefore the expected value of the biomarker is defined 

at all possible values of 𝑡. Second, using the expected value ensures that the measurement 

error component of the observed biomarker measurements is excluded from the biomarker-

event association. This is important since it has been shown that measurement error in an 

observed covariate in a proportional hazards model leads to bias towards the null for the 

estimated log hazard ratio (Prentice, 1982). Therefore, if the longitudinal submodel is 

appropriately specified, the joint model postulates a meaningful association between the 

hazard of the event and the underlying “true” error-free individual-specific value of the 

biomarker.  

In contrast, if we were to include the biomarker as a time-varying covariate in a time-

dependent Cox model then we must obtain an observed value of the biomarker for every 

individual at each unique event time. In practice, however, such observed values of the 

biomarker are generally not available and therefore the so-called “missing” biomarker 
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measurements must be imputed. Often the method of imputation used in the time-dependent 

Cox model, be it implicitly or explicitly, is the last observation carried forward; a method 

which has been shown to lead to biased inferences (Andersen and Liestøl, 2003). 

Lastly, although the current value association structure has been the most common type of 

association structure appearing in the joint modelling literature, a variety of other 

(sometimes more complex) association structures are also possible and these will be 

discussed in greater detail in Section 2.3.4. 

Likelihood 

Under a set of assumptions that will be described in greater detail in Section 2.3.5, the 

likelihood function for a single individual 𝑖 under the shared parameter joint model can be 

written as 

 𝐿𝑖 = ∫(∏𝑝(𝑦𝑖𝑗 | 𝒃𝑖, 𝜽)

𝑛𝑖

𝑗=1

)𝑝(𝑇𝑖, 𝑑𝑖  | 𝒃𝑖, 𝜽) 𝑝(𝒃𝑖 | 𝜽) 𝑑𝒃𝑖 (4) 

where the contribution to the likelihood from the event submodel is 

 𝑝(𝑇𝑖, 𝑑𝑖 | 𝒃𝑖, 𝜽) = ℎ𝑖(𝑇𝑖 | 𝒃𝑖, 𝜽)
𝑑𝑖 exp(−∫ ℎ𝑖(𝑠 | 𝒃𝑖, 𝜽)

𝑇𝑖

0

𝑑𝑠) (5) 

and where 𝑝(. ) denotes probability density functions, and 𝜽 denotes the combined vector 

of all remaining unknown parameters in the model. Estimation of the model based on this 

likelihood will be discussed in Section 2.5. 

2.3.2 Extensions to the longitudinal submodel 

2.3.2.1 Multivariate generalised linear mixed models 

With regard to the longitudinal submodel, two main extensions are of relevance to this 

thesis. The first extension is a generalisation of the longitudinal submodel so that it can 

accommodate different types of outcome data, for example, repeatedly measured binary 

outcomes or counts (Faucett et al., 1998; Li et al., 2009). The second extension is to allow 

for more than one longitudinal outcome (i.e. multiple biomarkers), commonly known as a 

multivariate joint model. 
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Both of these aforementioned extensions can be accommodated within a single joint 

modelling framework. This can be achieved by specifying the longitudinal submodel as a 

multivariate generalised linear mixed model, which includes the multivariate linear mixed 

model as a special case. Dependence between the multiple longitudinal outcomes can be 

captured by allowing for correlations between individual-specific parameters across the 

outcome models. 

Assume 𝑦𝑖𝑗𝑚 = 𝑦𝑖𝑚(𝑡𝑖𝑗𝑚) corresponds to the value of the 𝑚𝑡ℎ longitudinal biomarker 

observed at the 𝑗𝑡ℎ (𝑗 = 1,… , 𝑛𝑖𝑗𝑚) time point, 𝑡𝑖𝑗𝑚, for the 𝑖𝑡ℎ (𝑖 = 1, … , 𝑁) individual. 

A multivariate generalised linear mixed model assumes that each longitudinal biomarker 

can be modelled in continuous time where 𝑌𝑖𝑚(𝑡) follows a distribution in the exponential 

family with mean 𝜇𝑖𝑚(𝑡) and linear predictor  

 𝜂𝑖𝑚(𝑡) = 𝑔𝑚(𝜇𝑖𝑚(𝑡)) = 𝒙𝑖𝑚
′ (𝑡)𝜷𝑚 + 𝒛𝑖𝑚

′ (𝑡)𝒃𝑖𝑚 (6) 

where 𝒙𝑖𝑚(𝑡) and 𝒛𝑖𝑚(𝑡) are vectors of covariates, possibly time-dependent, with 

associated vectors of population-level (i.e. fixed effects) parameters 𝜷𝑚 and individual-

specific (i.e. random effects) parameters 𝒃𝑖𝑚, and 𝑔𝑚(. ) is some known link function.  

The distributional family and link function are allowed to differ over the 𝑀 longitudinal 

submodels. Specific choices of link function and distributional family lead to, for example, 

a logistic (logit link, Bernoulli family) or Poisson (log link, Poisson family) regression 

submodel. As previously mentioned, dependence between the different longitudinal 

biomarkers is captured via correlated individual-specific parameters. Specifically, a 

multivariate normal distribution for the individual-specific parameters can be assumed; that 

is 

 (

𝒃𝑖1

⋮

𝒃𝑖𝑀

) = 𝒃𝑖 ~ 𝑁(0, 𝚺𝑏) (7) 

for some unstructured variance-covariance matrix 𝚺𝑏.  

Assuming that the 𝑀 different longitudinal outcomes are independent, conditional on the 

individual-specific parameters 𝒃𝑖 (i.e. conditional independence), the joint distribution of 

the biomarkers at time 𝑡 can be written as 

14



 

 𝑝(𝑦𝑖1(𝑡),… , 𝑦𝑖𝑀(𝑡) | 𝒃𝑖, 𝜽) =∏𝑝(𝑦𝑖𝑚(𝑡) | 𝒃𝑖, 𝜽)

𝑀

𝑚=1

  (8) 

and accordingly, the likelihood function for the multivariate shared parameter joint model 

as 

 𝐿𝑖 = ∫(∏∏𝑝(𝑦𝑖𝑗𝑚 | 𝒃𝑖, 𝜽)

𝑛𝑖𝑚

𝑗=1

𝑀

𝑚=1

)𝑝(𝑇𝑖, 𝑑𝑖  | 𝒃𝑖, 𝜽) 𝑝(𝒃𝑖 | 𝜽) 𝑑𝒃𝑖 (9) 

where the contribution to the likelihood from the event submodel remains the same as was 

specified in equation (5). 

Due to its flexibility and relative computational ease, this specification has been the most 

common approach for handling multiple longitudinal biomarkers in the joint modelling 

literature to date (Hickey et al., 2016). However, assuming a correlated random effects 

structure is not the only possible approach to allow for dependence between multiple, 

correlated, longitudinal outcomes (Verbeke et al., 2014). An example of a different 

approach is a conditional specification of outcomes, as in the “product-normal” model 

(Spiegelhalter, 2002; Cooper et al., 2007). Another example is the use of copulas (Lambert 

and Vandenhende, 2002). However, these approaches will not be discussed further as they 

are less common and are not of direct relevance to this thesis. 

The use of a multivariate longitudinal submodel also increases the potential complexity for 

the specification of the joint model association structure. Following on from Section 2.3.1, 

a natural association structure for the multivariate joint model would be to assume that the 

log hazard of the event at time 𝑡 is linearly related to the current value of the linear predictor 

for each biomarker. That is, to assume an event submodel of the form 

 ℎ𝑖(𝑡) = ℎ0(𝑡) exp (𝑤𝑖
′(𝑡)𝛾 + ∑ 𝛼𝑚𝜂𝑖𝑚(𝑡)

𝑀

𝑚=1

) (10) 

However, more complicated association structures are also possible and these will be 

discussed in Section 2.3.4. 

In terms of extensions to the longitudinal submodel, this thesis will primarily concentrate 

on the multivariate generalised linear mixed model. However, a variety of other extensions 
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to the longitudinal submodel have been considered in the literature and these will be 

summarised briefly in the following sections. 

2.3.2.2 Two-part models 

A small number of studies have used joint modelling approaches with two-part models for 

the longitudinal outcome. Brilleman et al. (2016) (Brilleman et al., 2016) used a two-part 

“hurdle” model for the longitudinal response, consisting of both logistic and Gamma mixed 

effect regression model components. Their approach was motivated by longitudinal 

biomarker data (HIV RNA viral load) that was subject to a lower detection limit. Hatfield 

et al. (2012) (Hatfield et al., 2012) used a two-part “hurdle” model with logistic and Beta 

mixed effects regression model components to model repeatedly measured patient-reported 

outcomes. Their patient-reported outcomes were on a bounded scale between 0 and 100 

and were therefore rescaled to follow the support of the Beta distribution. Their two-part 

model allowed for excess zeroes in the observed outcome measurements. Other authors 

have also considered two-part modelling approaches for the longitudinal submodel (Liu, 

2009; Rizopoulos et al., 2008). 

2.3.2.3 Mechanistic models 

Another approach used for the longitudinal submodel has been to specify a non-linear 

mixed effects model or a set of non-linear ordinary differential equations. This approach 

has primarily been used in pharmacometric-based applications, where researchers can 

specify mechanistic models which they believe accurately mimic the underlying biological 

processes. Desmee et al. (2017b) used a set of non-linear ordinary differential equations to 

model changes in PSA during chemotherapy for metastatic prostate cancer and considered 

a number of different association structures. In further work (Desmée et al., 2017a) they 

discuss methods for generating dynamic predictions from these types of mechanistic joint 

models. Mbogning et al. (2015) proposed a joint model with a non-linear mixed effect 

longitudinal submodel and either a terminating, or recurrent, event submodel. Moreover, 

they described how researchers can estimate their models using the Monolix software 

(Lixoft SAS, 2018). The main disadvantage of these types of joint models is that in general 

they are computationally intensive. However, it has been suggested that the use of a 

stochastic approximation expectation–maximization (SAEM) algorithm may alleviate 

some of the computational burden (Mbogning et al., 2015).  
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2.3.3 Extensions to the event submodel 

As previously discussed, the most common formulation of a shared parameter joint model 

has included a proportional hazards regression submodel for modelling the hazard of the 

event outcome. However, this standard formulation has been extended in a number of ways, 

including methods to handle cause-specific events (i.e. competing risks) (Li et al., 2009; 

Williamson et al., 2008), recurring events (Król et al., 2016), or non-proportional hazards. 

Similarly, some authors have proposed alternatives that do not require an assumption of 

proportional hazards at all; for example, through the use of additive hazards or an accelerate 

failure time (AFT) specification. These extensions are each discussed in the following 

subsections.  

2.3.3.1 Competing risks 

A competing risks event submodel with a current value association structure can be 

specified as 

 ℎ𝑖𝑘(𝑡) = ℎ0𝑘(𝑡) exp (𝒘𝑖𝑘
′ (𝑡)𝜸𝑘 + ∑ 𝛼𝑚𝑘𝜂𝑖𝑚(𝑡)

𝑀

𝑚=1

) (11) 

where ℎ𝑖𝑘(𝑡) is the cause-specific hazard for individual 𝑖 at time 𝑡 for event type 𝑘 (𝑘 =

1, … , 𝐾), ℎ0𝑘(𝑡) is the cause-specific baseline hazard at time 𝑡 for event type 𝑘, 𝒘𝑖𝑘(𝑡) is 

a vector of covariates, possibly time-dependent, for individual 𝑖 and assumed to be related 

to event type 𝑘 through the vector of population-level parameters 𝜸𝑘, and 𝜂𝑖𝑚(𝑡) is the 

linear predictor for the 𝑚𝑡ℎ longitudinal outcome evaluated for individual 𝑖 at time 𝑡. 

The model in equation (11) posits a cause-specific association between the linear predictor 

from the longitudinal submodel and the log hazard of each event type. The estimated cause-

specific association parameter, 𝛼𝑚𝑘, is interpreted in the same way as in the model without 

competing risks. That is, given that individual 𝑖 is still alive at time 𝑡, then 𝛼𝑚𝑘 quantifies 

the association between a one unit increase in the linear predictor for the 𝑚𝑡ℎ biomarker 

and the log cause-specific hazard of event type 𝑘 (assuming all other covariates in the model 

are held constant). 

To accommodate the cause-specific hazard functions in the estimation of the model the 

likelihood for the event submodel is written as 
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 𝑝(𝑇𝑖, 𝑑𝑖 | 𝒃𝑖, 𝜽) =∏ℎ𝑖𝑘(𝑇𝑖 | 𝒃𝑖, 𝜽)
𝑑𝑖𝑘

𝐾

𝑘=1

exp (−∫ ℎ𝑖𝑘(𝑠 | 𝒃𝑖, 𝜽)
𝑇𝑖

0

𝑑𝑠) (12) 

where 𝑑𝑖𝑘 takes the value 1 if individual 𝑖 experienced event type 𝑘, and 0 otherwise.  

However, under a competing risks model the one-to-one correspondence between the 

cause-specific hazard rate for an event type and the cause-specific risk of the event no 

longer holds (Andersen et al., 2012). That is, in the absence competing risks, the risk of the 

event occurring for individual 𝑖 up to time 𝑡 is given by  

 𝐹𝑖(𝑡) = 1 − 𝑆𝑖(𝑡) = 1 − 𝑃(𝑇𝑖
∗ ≥ 𝑡) = 1 − exp (−𝐻𝑖(𝑡)) (13) 

where 𝑆𝑖(𝑡) is the probability of individual 𝑖 being event free at time 𝑡 (i.e. the survival 

probability), and 𝐻𝑖(𝑡) = ∫ ℎ𝑖(𝑠)𝑑𝑠
𝑡

𝑠=0
 is the cumulative hazard for individual 𝑖 at time 𝑡. 

In the presence of the competing events, the risk of individual 𝑖 experiencing any event 

prior to time 𝑡 depends on the cause-specific hazard rates for all 𝑘 = 1, … , 𝐾 competing 

events and is given by 

 𝐹𝑖(𝑡) = 1 − 𝑆𝑖(𝑡) = 1 − exp (−∑ 𝐻𝑖𝑘(𝑡)
𝐾

𝑘=1
) (14) 

where 𝐻𝑖𝑘(𝑡) = ∫ ℎ𝑖𝑘(𝑠)𝑑𝑠
𝑡

𝑠=0
. One is often also interested in the risk of individual 𝑖 

specifically experiencing event type 𝑘 prior to time 𝑡, often called the cause-specific 

cumulative incidence (Koller et al., 2012). This is defined as 

 𝐹𝑖𝑘(𝑡) = 1 − ∫ 𝑆𝑖(𝑠)
𝑡

0

ℎ𝑖𝑘(𝑠)𝑑𝑠 (15) 

This shows that the cause-specific cumulative incidence for event type 𝑘 at time 𝑡 is a 

function of the cause-specific hazard rates for all 𝑘 = 1,… , 𝐾 competing events. This 

means that, for example, a covariate with a positive association with the hazard rate for 

event type 𝑘 will not necessarily be associated with an increased risk (i.e. probability) of 

that event occurring; rather, it will also depend on the association between that covariate 

and the hazard rates for each of the 𝐾 − 1 other event types. 

A consequence of the lack of a one-to-one correspondence between the cause-specific 

hazard function (rate) and the cause-specific cumulative incidence (risk) is that inferences 

obtained from a competing risks time-to-event model might differ depending on which 
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quantity one chooses to examine. More specifically, the cause-specific hazard functions 

and cause-specific cumulative incidence functions relate to different aspects of the 

association between the covariate and the time-to-event outcome, and each is more (or less) 

appropriate for answering a given type of research question. Cause-specific hazard 

functions are generally considered more appropriate for research questions related to the 

potential for etiological associations, whereas the cause-specific cumulative incidence 

functions are generally considered more appropriate for prognostic modelling (i.e. risk 

prediction). These aspects of the competing risks model are discussed further in the paper 

presented in Chapter 4 of this thesis, as well as in Andersen et al. (2012) and Koller et al. 

(2012). 

Competing risks have been considered within a joint modelling framework by a number of 

authors. Lu (2017) proposed a competing risks joint model which they used to analyse CD4 

cell counts and their association with cause-specific mortality (human immunodeficiency 

virus (HIV) related deaths versus other deaths) in HIV patients. They included a number of 

extensions to the model to allow for longitudinal measurements that were both skewed and 

subject to a lower detection limit. Andrinopoulou et al. (2014) proposed a joint model for 

bivariate longitudinal data (i.e. two repeatedly measured biomarkers) and competing risks 

data. They used their model to analyse the associations between aortic valve performance 

and the risk or death or reoperation in patients who had undergone an aortic valve 

replacement. Other authors have also considered competing risks joint models (Huang et 

al., 2010; Williamson et al., 2008). In the application presented in Chapter 4 of this thesis, 

a competing risks joint model will be used to explore the association between longitudinal 

changes in BMI and the rates of two competing event types, kidney transplantation and 

death without transplantation, each occurring within a haemodialysis population. 

With regard to user-friendly software implementations of the competing risks joint model 

there are only a small number of examples. The JM (Rizopoulos, 2010) R package 

accommodates competing risks under a shared parameter joint modelling framework, 

whilst the lcmm (Proust-Lima et al., 2017) R package accommodates competing risks 

under a latent class joint modelling framework (the latent class joint modelling framework 

is discussed in Section 2.4). 
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2.3.3.2 Recurrent events 

Recurrent events are defined as events which can occur more than once for a single 

individual (Amorim and Cai, 2015). These event types have also been considered in a joint 

longitudinal and time-to-event modelling framework. An example of a recurrent event 

process is the occurrence of new tumour lesions in patients with non-small cell lung cancer 

(NSCLC). Under a standard joint modelling framework, one may be interested in the 

association between a repeatedly measured clinical biomarker, such as ctDNA, and the time 

from a defined baseline, such as initiation of treatment, until a terminating event such as 

death. However, for each patient we may also observe the time from baseline until the 

appearance of each new tumour lesion that occurs prior to death or censoring. Under an 

extended joint model we can allow for the associations between: (i) ctDNA and the risk of 

death; (ii) ctDNA and the rate at which new lesions appear; and (iii) the rate at which new 

lesions appear and the risk of death.  

A joint model for a longitudinal biomarker, a recurrent event, and a terminating event can 

be formulated as follows. The observed timing of the 𝑟𝑡ℎ occurrence (𝑟 = 1, … , 𝑅𝑖) of the 

recurring event can be denoted 𝑇𝑖𝑟 = min (𝑇𝑖𝑟
∗  , 𝑇𝑖

∗, 𝐶𝑖) where 𝑇𝑖𝑟
∗  denotes the so-called 

“true” event time for the 𝑟𝑡ℎ occurrence of the recurring event, which may not be observed 

due to right-censoring (i.e. 𝐶𝑖 < 𝑇𝑖𝑟
∗ ) or the prior occurrence of the terminating event (i.e. 

𝑇𝑖
∗ < 𝑇𝑖𝑟

∗ ). An event indicator for the 𝑟𝑡ℎ occurrence of the recurrent event can be defined 

as 𝑑𝑖𝑟 = 𝐼(𝑇𝑖𝑟 = 𝑇𝑖𝑟
∗ ), whilst the event indicator for the terminating event remains the same 

as previously defined, i.e. 𝑑𝑖 = 𝐼(𝑇𝑖
∗ ≤ 𝐶𝑖).  

The most common shared parameter joint modelling approach for accommodating the 

recurrent event process postulates a separate proportional hazards regression for each of 

the recurrent and terminating events (defined below). Moreover, to allow for a possible 

dependence between the terminating and recurrent event processes themselves, it is 

common to introduce a shared individual-specific parameter (i.e. random effect), 𝑢𝑖, 

commonly known as a shared frailty term. Therefore, to accommodate the recurrent event 

within a shared parameter joint modelling framework the event submodel can be redefined 

as the following set of proportional hazard regression equations 
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ℎ𝑖𝑟(𝑡) = ℎ0𝑟(𝑡) exp (𝒘𝑖𝑟
′ (𝑡)𝜸𝑟 + ∑ 𝛼𝑚𝑟𝜂𝑖𝑚(𝑡)

𝑀

𝑚=1

+ 𝑢𝑖)

ℎ𝑖(𝑡) = ℎ0(𝑡) exp(𝒘𝑖
′(𝑡)𝜸 + ∑ 𝛼𝑚𝜂𝑖𝑚(𝑡)

𝑀

𝑚=1

+ 𝛿𝑢𝑖)

 (16) 

where ℎ𝑖𝑟(𝑡) is the hazard of the 𝑟𝑡ℎ occurrence of the recurrent event for individual 𝑖 at 

time 𝑡, ℎ0𝑟(𝑡) is the baseline hazard for the 𝑟𝑡ℎ occurrence of the recurrent event at time 𝑡, 

𝒘𝑖𝑟(𝑡) is a vector of covariates with associated vector of population-level (i.e. fixed effects) 

parameters 𝜸𝑟, and 𝛼𝑚𝑟 is the population-level association parameter for the 𝑚𝑡ℎ 

biomarker. The vector of covariates included in the regression equation for the recurrent 

event process, 𝒘𝑖𝑟(𝑡), may or may not coincide with the vector of covariates included in 

the regression equation for the terminating event model, 𝒘𝑖(𝑡). 

The frailty parameters 𝑢𝑖 are scaled in the terminating event regression by the population-

level parameter 𝛿 to provide a flexible dependence between the recurrent and terminating 

event processes. For example, if 𝛿 = 0 then there is no dependence between the hazard 

rates for the terminating and recurrent events, however, each can still be associated with 

the longitudinal biomarker(s). An additional consideration is the distribution given to 𝑢𝑖 

which might be, for example, normal or log-Gamma. Moreover, one may or may not wish 

to allow for correlation between 𝑢𝑖 and the individual-specific parameters from the 

longitudinal submodel, 𝒃𝑖. This choice is likely to relate to the context of the application 

and considerations related to computational complexity (including the amount of data 

available with which to estimate the parameters in the model). 

The likelihood for the shared parameter joint model defined by equations (6), (7) and (16) 

is given by 

 

 

𝐿𝑖 = ∫∫(∏∏𝑝(𝑦𝑖𝑗𝑚 | 𝒃𝑖, 𝜽)

𝑛𝑖𝑚

𝑗=1

𝑀

𝑚=1

)𝑝(𝑇𝑖, 𝑑𝑖 | 𝒃𝑖, 𝑢𝑖 , 𝜽)  

                     (∏𝑝(𝑇𝑖𝑟 , 𝑑𝑖𝑟 | 𝒃𝑖, 𝑢𝑖 , 𝜽)

𝑅𝑖

𝑟=1

)  𝑝(𝒃𝑖  | 𝜽) 𝑝(𝑢𝑖 | 𝜽) 𝑑𝒃𝑖 𝑑𝑢𝑖 

(17) 

where the contribution from the 𝑟𝑡ℎ occurrence of the recurrent event is 
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𝑝(𝑇𝑖𝑟 , 𝑑𝑖𝑟 | 𝒃𝑖, 𝑢𝑖 , 𝜽)

= ℎ𝑖𝑟(𝑇𝑖𝑟 | 𝒃𝑖, 𝑢𝑖 , 𝜽)
𝑑𝑖𝑟 exp (−∫ ℎ𝑖𝑟(𝑠 | 𝒃𝑖, 𝑢𝑖 , 𝜽)

𝑇𝑖𝑟

𝑇𝑖(𝑟−1)

𝑑𝑠) 
(18) 

with 𝑇𝑖(𝑟−1) set equal to 0 (i.e. baseline) when 𝑟 = 1. This formulation assumes that the 

timescale for the recurrent event continues regardless of whether a recurrent event occurs 

or not, sometimes known as “calendar time”. However, an alternative specification uses the 

so-called “gap time” approach in which the timescale for the recurrent event is reset to zero 

each time a recurrent event occurs. Under the gap time approach, the likelihood 

contribution from the 𝑟𝑡ℎ occurrence of the recurrent event is defined as 

 

𝑝(𝑇𝑖𝑟 , 𝑑𝑖𝑟 | 𝒃𝑖, 𝑢𝑖 , 𝜽)

= ℎ𝑖𝑟(𝑇𝑖𝑟 − 𝑇𝑖(𝑟−1) | 𝒃𝑖, 𝑢𝑖 , 𝜽)
𝑑𝑖𝑟
exp (−∫ ℎ𝑖𝑟(𝑠 | 𝒃𝑖, 𝑢𝑖 , 𝜽)

𝑇𝑖𝑟−𝑇𝑖(𝑟−1)

0

𝑑𝑠) 
(19) 

Joint models accommodating both recurrent and terminal events have been discussed by 

only a small number of authors. Krol et al. (2016) used such a model to identify the 

associations between tumour size, the appearance of new lesions, and the risk of death, in 

patients with colorectal cancer. In addition, their model allowed for left censoring in the 

longitudinal biomarker, since the tumour size measurements were subject to a lower 

detection limit. The authors also discussed how dynamic predictions can be obtained and 

assessed using their model. Liu and Huang (2009) used such a model to explore the 

associations between CD4 cell counts, the appearance of opportunistic diseases, and the 

risk of death, in HIV patients. However, their model included a time-fixed association 

structure between the longitudinal and each event process that was based on shared random 

effects, rather than a time-dependent association structure based on the current value of the 

biomarker. Kim et al. (2012) proposed a similar model, for a longitudinal outcome, 

recurrent event, and terminating event, but modelled the event outcomes using a flexible 

transformation of the cumulative intensities, rather than modelling them directly on the 

hazard scale. Some authors have also used a recurrent event submodel to relax the common 

assumption of an uninformative measurement schedule for the longitudinal outcome (this 

assumption is discussed in greater detail in Section 2.3.5) (Liu et al., 2008). 

There are currently very few user-friendly software implementations of the recurrent event 

joint model. A notable exception is the frailtypack (Król et al., 2017; Rondeau et al., 2012) 
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R package, which allows the user to estimate a joint model consisting of a longitudinal 

biomarker, a recurrent event, and a terminating event. Although the implementation of the 

model in frailtypack is relatively flexible, it is also limited in some regards. For example, 

the user may choose between different options for the baseline hazard, or can choose 

between a gap time or calendar time scale. However, the vector 𝒃𝑖 can be a maximum 

length of two, only a small number of association structures are accommodated, and one 

must assume the longitudinal biomarker is normally distributed. 

2.3.3.3 Alternatives for proportional hazards 

In a number of situations the assumption of proportional hazards may not be valid, thereby 

leading to potentially biased inferences. One approach to deal with such situations is to 

allow the relevant hazard ratios in the event submodel (i.e. those where the proportionality 

assumption is not valid) to be a function of time; this leads to what is commonly referred 

to as non-proportional hazards or time-dependent effects. 

Although non-proportional hazards have been widely discussed in the survival analysis 

literature, they have not been widely discussed in the context of joint modelling. However, 

it is noteworthy that the most recent release of the JMbayes (Rizopoulos, 2016) R package 

(version 0.8-70) does allow for a time-dependent association parameter. Examples of this 

functionality are provided in the package vignette (Rizopoulos, 2017). Similarly, the 

megenreg (Crowther, 2017a, 2017c) Stata package allows the user to specify a joint model 

that incorporates a time-dependent association parameter. A tutorial showing this 

functionality is available on the megenreg author’s website (Crowther, 2017b). These 

implementations provide increased flexibility for researchers by relaxing the assumption 

that the association between the biomarker and the hazard of the event must be constant 

over time. 

However, another approach to dealing with non-proportional hazards is to specify an 

alternative formulation for the event submodel entirely, one that does not assume covariates 

have a multiplicative effect on the hazard of the event. Such alternatives include the use of 

additive hazards or AFT models. 

Additive hazards regression models assume that covariates have an additive effect on the 

hazard, rather than the multiplicative effect seen in the proportional hazards regression 
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model. Accordingly, an additive hazards event submodel with a current value association 

structure can be specified as 

 ℎ𝑖(𝑡) = ℎ0(𝑡) + 𝑤𝑖
′(𝑡)𝛾 + ∑ 𝛼𝑚𝜂𝑖𝑚(𝑡)

𝑀

𝑚=1

 (20) 

Here, the association parameters 𝛼𝑚 (𝑚 = 1,… ,𝑀) correspond to absolute differences on 

the hazard scale. In contrast, the association parameters under the proportional hazards 

event submodel in equation (3) correspond to absolute differences on the log hazard scale, 

which are more easily interpreted as relative differences on the hazard scale (i.e. hazard 

ratios, obtained by taking the exponential of 𝛼𝑚). In some settings the estimation of 

absolute (rather than relative) differences may be more appropriate and therefore an 

additive hazards model may be preferable. However, there are very few examples of joint 

modelling approaches that have incorporated an additive hazards formulation. One 

exception is Moreno-Betancur et al. (2017), who incorporated an additive hazards event 

submodel within an extended two-stage joint modelling approach based on multiple 

imputation. 

AFT models are another alternative, whereby covariates have a multiplicative effect on the 

time-to-event outcome itself, rather than a multiplicative effect on the hazard of the event. 

Although several authors have considered an AFT event submodel under a joint modelling 

framework, they have not proven as popular as the proportional hazards modelling 

approach. A primary reason for this is likely to be that the introduction of time-varying 

covariates into the AFT model creates complications for interpretation of the parameters. 

It is worth noting, however, that a method for circumventing issues around the introduction 

of a time-varying covariate into the AFT event submodel is to use a time-independent 

association structure based on shared random effects; see, for example, Wu et al. (2010). 

Since AFT models are not considered any further as part of this thesis, the reader is referred 

to Tseng et al. (2005) and Rizopoulos (2012b) for a discussion of these issues. 

2.3.4 Extensions to the association structure 

2.3.4.1 Specification 

As mentioned previously, the dependence between the longitudinal and event submodels is 

captured through the association structure of the joint model, which can be specified in a 

24



 

number of ways. So far, the only association structure that has been explicitly formalised 

in this thesis is the so-called current value association structure. Recall that for a 

multivariate joint model with a current value association structure the event submodel can 

be specified as 

 ℎ𝑖(𝑡) = ℎ0(𝑡) exp (𝒘𝑖
′(𝑡)𝜸 + ∑ 𝛼𝑚𝜂𝑖𝑚(𝑡)

𝑀

𝑚=1

) (21) 

Here, it is the ∑ 𝛼𝑚𝜂𝑖𝑚(𝑡)
𝑀
𝑚=1  term that is referred to as the association structure, since it 

is this term that captures the assumed dependence between the longitudinal and event 

outcomes. More specifically, under this formulation, dependence between the event and 

the 𝑚𝑡ℎ longitudinal outcome is assumed to be captured through a linear association 

between the log hazard of the event at time 𝑡 and the current value of the linear predictor 

of the 𝑚𝑡ℎ longitudinal submodel at time 𝑡.  

In a situation where the longitudinal submodel is a linear mixed model (i.e. an identity link 

function and normal error distribution) the current value association structure can be 

viewed as a method for including the underlying "true" value of the biomarker as a time-

varying covariate in the event submodel. The term "true" is used here to refer to a value of 

the biomarker which is not subject to measurement error or discrete-time observation. Of 

course, for the expected value from the longitudinal submodel to be considered the so-

called "true" underlying biomarker value, the longitudinal submodel would need to be 

correctly specified, which may not be the case in practice. However, it has been shown that 

a joint modelling approach with a current value association can provide relatively unbiased 

estimates of the association parameter even under (specific forms of) misspecification of 

the longitudinal submodel (Crowther et al., 2016). 

Although the current value association structure is the most widely used association 

structure in the joint modelling literature to date, there are a variety of other association 

structures that can be specified. These other structures have been reviewed and discussed 

by other authors (Hickey et al., 2016; Rizopoulos and Ghosh, 2011; Lawrence Gould et al., 

2015; Crowther, Lambert, et al., 2013; Mauff et al., 2017). 

To introduce a general form for the association structure, the multivariate shared parameter 

joint model can be specified as 
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 ℎ𝑖(𝑡) = ℎ0(𝑡) exp(𝑤𝑖
′(𝑡)𝛾 + ∑∑𝛼𝑚𝑞𝑓𝑚𝑞(𝜷, 𝒃𝑖; 𝑡, 𝑢)

𝑄𝑚

𝑞=1

𝑀

𝑚=1

) (22) 

where 𝜷 = (𝜷1, … , 𝜷𝑀) is the combined vector of fixed effect parameters across all 𝑀 

longitudinal submodels, 𝑓𝑚𝑞(. ) is a known function defining the 𝑞𝑡ℎ (𝑞 = 1,… , 𝑄𝑚) 

association structure term related to the 𝑚𝑡ℎ (𝑚 = 1,… ,𝑀) longitudinal submodel, 𝑄𝑚 is 

the total number of association structure terms related to the 𝑚𝑡ℎ longitudinal submodel, 

and 𝑢 is a potential lag time used in the association structure.  

The functions 𝑓𝑚𝑞(. ) determine the association structure for the multivariate joint model 

and must be specified. Three example association structures are defined as follows. First, 

suppose that 𝑄𝑚 = 1 for all 𝑚; that is, for each of the 1,… ,𝑀 longitudinal biomarkers there 

is a single term in the association structure linking that biomarker to the log hazard of the 

event. If 𝑓𝑚1(𝜷, 𝒃𝑖; 𝑡, 𝑢) = 𝜂𝑖𝑚(𝑡) for all 𝑚 then equation (22) reduces to the current value 

association structure that has been discussed earlier in this chapter (i.e. an association 

structure based on the current value of the linear predictor from the longitudinal 

submodels). Secondly, if 𝑓𝑚1(𝜷, 𝒃𝑖; 𝑡, 𝑢) = 𝜂𝑖𝑚(𝑡 − 𝑢) for all 𝑚 then equation (22) 

reduces to a lagged value association structure; the log hazard of the event at time 𝑡 is 

assumed to be linearly associated with the value of the linear predictor for each longitudinal 

submodel evaluated at time 𝑡 − 𝑢. Thirdly, if 𝑓𝑚1(𝜷, 𝒃𝑖; 𝑡, 𝑢) =
𝑑𝜂𝑖𝑚(𝑡)

𝑑𝑡
 for all 𝑚 then 

equation (22) reduces to a current slope association structure; the log hazard of the event 

at time 𝑡 is assumed to be linearly associated with the rate of change (i.e. slope) of the linear 

predictor for each longitudinal submodel evaluated at time 𝑡. 

Table 2 provides a relatively comprehensive list of possible association structures for 

shared parameter joint models that goes beyond the three examples given above. In addition 

to those association structures presented in Table 2, it is also possible to define a shared 

correlation structure for the individual-level random effects in the longitudinal submodel(s) 

and a frailty term in the event submodel. That is, suppose the event submodel takes the 

form 

 ℎ𝑖(𝑡) = ℎ0(𝑡) exp(𝒘𝑖
′(𝑡)𝜸 + 𝑢𝑖) (23) 
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and then define (
𝒃𝑖

𝑢𝑖
) ~ 𝐹𝚺 where 𝐹𝚺 is a multivariate distribution allowing for dependence 

between the individual-level random effects from the longitudinal submodel(s), 𝒃𝑖, and the 

individual-level frailty term in the event submodel, 𝑢𝑖, through some variance-covariance 

matrix 𝚺.  

Lastly, the association structure can be defined based on latent classes, whereby it is not 

between-individual differences in the biomarker that are associated with differences in 

event risk, but rather it is between-class differences in the biomarker that are associated 

with differences in event risk. Joint models with a latent class association structure will be 

discussed in detail in Section 2.4. 

An extensive review of possible association structures is provided by Hickey et al. (2016). 

In addition to describing the aforementioned association structures in detail, they also cite 

studies that have used or discussed each of the association structures. Although the majority 

of these association structures have been discussed in various places throughout the 

literature, most joint modelling software packages only make available a limited set. The 

joint modelling functionality in the rstanarm (Brilleman et al., 2018; Stan Development 

Team, 2017a) R package, which will be introduced in Chapter 5 of this thesis, aims to 

implement the full set of association structures defined in Table 2, with the exception of 

weighted cumulative effects. 

2.3.4.2 Comparison and selection 

The choice of association structure should ideally be driven by clinical context and the 

study’s main research question. In the joint modelling literature there are several examples 

of associations structures that were used to help answer specific clinical or epidemiological 

research questions. Crowther et al. (2013) showed how a joint modelling approach with a  
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Table 2. Forms for the association structure of a shared parameter joint model. 

Association structure Specification1 for 

𝑓𝑚𝑞(𝜷, 𝒃𝑖; 𝑡, 𝑢) 

Additional comments 

Current value 𝜂𝑖𝑚(𝑡)   

Lagged value 𝜂𝑖𝑚(𝑡 − 𝑢)+  For some specified lag time 𝑢, and with (𝑡 − 𝑢)+ = 𝑡 − 𝑢 when  𝑡 > 𝑢 and 0 otherwise. 

Current slope 𝑑𝑠𝜂𝑖𝑚(𝑡)

𝑑𝑡𝑠
  The derivative here is generalised through the index 𝑠 (for some 𝑠 ≥ 0), however, in most 

instances 𝑠 = 1. If 𝑠 = 0, then the association structure simplifies to the current value. 

Lagged slope 𝑑𝑠𝜂𝑖𝑚(𝑡−𝑢)+

𝑑𝑡𝑠
  For some specified lag time 𝑢, and with (𝑡 − 𝑢)+ = 𝑡 − 𝑢 when  𝑡 > 𝑢 and 0 otherwise. 

Cumulative effects ∫ 𝜂𝑖𝑚(𝑠)𝑑𝑠
𝑡

𝑠=0
   

Lagged cumulative 

effects 

∫ 𝜂𝑖𝑚(𝑠)𝑑𝑠
(𝑡−𝑢)+

𝑠=0
  For some specified lag time 𝑢, and with (𝑡 − 𝑢)+ = 𝑡 − 𝑢 when  𝑡 > 𝑢 and 0 otherwise. 

Weighted cumulative 

effects 

∫ 𝜔(𝑡 −
𝑡

𝑠=0

𝑠)+ 𝜂𝑖𝑚(𝑠)𝑑𝑠  

Here, 𝜔(. ) is some known weight function, with (𝑡 − 𝑠)+ = 𝑡 − 𝑠 when  𝑡 > 𝑠 and 0 

otherwise. 

Shared random effects 𝑏𝑖𝑚
𝑠   Where 𝑏𝑖𝑚

𝑠  is the 𝑠𝑡ℎ element of the 𝒃𝑖𝑚 vector, corresponding to the desired random effect that 

is to be used in the association structure (e.g. the random intercept parameter for the 𝑖𝑡ℎ 

individual). 
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Shared random and 

fixed effects 

𝑏𝑖𝑚
𝑠 + 𝑔(𝜷𝑚

(𝑠))  Where 𝑏𝑖𝑚
𝑠  is the same as defined for the shared random effects association structure, 𝜷𝑚

(𝑠)
 is 

the subset of parameters from the vector of fixed effects, 𝜷𝑚, that correspond to the random 

effect 𝑏𝑖𝑚
𝑠  in the association structure, and 𝑔(. ) is a specified function. In most cases, 𝜷𝑚

(𝑠)
 will 

be a single parameter (e.g. the population-level intercept) and 𝑔(. ) will be the identity function; 

however, it is possible for 𝜷𝑚
(𝑠)

 to be a vector with more than one element, in which case 𝑔(. ) is 

commonly a function returning the summation across the elements of 𝜷𝑚
(𝑠)

. 

Interactions with 

observed data 

𝜂𝑖𝑚(𝑡)𝑐𝑖(𝑡)  Where 𝑐𝑖(𝑡) is an observed covariate, which may be either time-fixed or time-varying.2 

Interactions between 

biomarkers 

𝜂𝑖𝑚(𝑡)𝜂𝑖𝑚′(𝑡)  For some 𝑚 ≠ 𝑚′. 

1 In the specification of any of these association structures, one could replace the linear predictor for the 𝑚𝑡ℎ longitudinal submodel, 𝜂𝑖𝑚(𝑡), with the expected value 𝜇𝑖𝑚(𝑡). 
2 For example, suppose 𝑐𝑖(𝑡) = 𝑐𝑖 takes the value 1 if individual 𝑖 is female and 0 otherwise, and that the event submodel is specified as ℎ𝑖(𝑡) =
ℎ0(𝑡) exp(𝑤𝑖

′(𝑡)𝛾 + 𝛼𝑚1𝜂𝑖𝑚(𝑡) + 𝛼𝑚2𝜂𝑖𝑚(𝑡)𝑐𝑖) then this would allow the effect of biomarker 𝑚 on the hazard of the event to differ by gender.
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shared random effects association structure can improve the use of baseline systolic blood 

pressure in prognostic models for cardiovascular risk. Their shared random effects 

association structure only included the individual-specific random intercept. This allowed 

the authors to use information from repeated SBP measurements to improve their estimate 

of an error-free baseline measure of SBP, thereby leading to a less biased estimate of the 

association between baseline SBP and cardiovascular risk. Mauff et al. (2017) described a 

novel association structure based on recency-weighted cumulative effects of the biomarker. 

They formulated a joint model in which cumulative HbA1c levels were associated with the 

risk of sight threatening retinopathy amongst type 2 diabetes patients. Through the use of 

a parametric weight function for the cumulative effects of the biomarker, they specified 

that more recent HbA1c levels would be more strongly associated (i.e. given a larger 

weighting) with the risk of the event. By estimating the parameters of the weight function 

they were able to describe the relative temporal importance of HbA1c levels.  

In some situations, however, it is not possible to determine the most appropriate association 

structure based on clinical context alone. For example, if the aim of a study is to develop a 

risk prediction model, then researchers may wish to consider a variety of association 

structures and choose the best performing joint model(s) based on some objective criteria. 

In this setting, one may wish to compare models using an information criterion or a measure 

of predictive accuracy.  

Zhang et al. (2014) proposed a decomposition of the Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) for joint models. The benefit of their 

decomposition is that it allows researchers to compare several joint models based on the fit 

of either the longitudinal submodel component, the event submodel component, or both. 

However, if the study objective is to develop a prognostic model, then AIC and BIC are 

known to be suboptimal. Commenges et al. (2012) therefore proposed an information 

criterion based on expected prognostic cross-entropy, adapted to joint models, and aimed 

at assessing predictive accuracy.  

Another alternative to using an information criterion is to instead directly assess the mean 

error in the event submodel predictions (i.e. calibration) using some form of scoring rule. 

In the context of joint models, measures for the mean error in predicted survival 

probabilities have been proposed by Henderson et al. (2002) and Schoop et al. (2008). 

These two authors differed primarily in the choice of loss function for the scoring rule, use 
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of an absolute error versus squared error, with the latter resulting in the so-called Brier 

score. 

Another common approach to assessing the event submodel predictions from a joint model 

is to focus on discrimination. That is, the ability of the model to discriminate between those 

individuals who do, and do not, experience the event. The most common measure of 

discrimination is the area under the receiver operating characteristic curve (AUC), which 

has been adapted to the dynamic nature of survival predictions from joint models 

(Rizopoulos, 2011). In addition, some authors have extended such measures of predictive 

error and discrimination to non-standard joint models, such as those with competing risks 

(Blanche et al., 2015). It is also worth noting that the aforementioned measures of predictive 

accuracy can be applied in the context of cross-validation, using either approximate cross-

validation measures (for example, approximate leave-one-out cross-validation for the 

expected prognostic cross-entropy measure discussed by Commenges et al. (2012)) or 

explicit K-fold cross validation.  

Lastly, if it is not necessary to derive a single final model, but simply to derive a prognostic 

tool for generating dynamic survival predictions, then model averaging is also possible. For 

example, Rizopoulos et al. (2014) proposed a Bayesian model averaging approach for joint 

models with model weights based on the posterior probability of a given model ℳ𝑘 being 

the true model from a given set of models ℳ1, … ,ℳ𝐾  conditional on the observed data. 

This approach avoids the need to choose a single joint model with the most appropriate 

association structure, and instead averages across the survival predictions from two or more 

joint models with different association structures, with greater weight provided to those 

models with a larger posterior probability.  

2.3.5 Assumptions 

2.3.5.1 Conditional independence 

Here we define a set of assumptions for the multivariate shared parameter joint model. The 

so-called conditional independence assumption of the shared parameter joint model 

postulates 

 𝑦𝑖𝑚(𝑡) ⊥ 𝑇𝑖
∗ | 𝒃𝑖, 𝜽 (24) 
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𝑦𝑖𝑚(𝑡) ⊥ 𝑦𝑖𝑚(𝑡
′) | 𝒃𝑖, 𝜽 

𝑦𝑖𝑚(𝑡) ⊥ 𝑦𝑖𝑚′(𝑡) | 𝒃𝑖, 𝜽 

for some 𝑡 ≠ 𝑡′ and 𝑚 ≠ 𝑚′, and where 𝜽 is the combined vector of all remaining (fixed 

effect) parameters in the model. That is, conditional on the individual-specific parameters 

𝒃𝑖 and population-level parameters 𝜽, the following are assumed: (i) any biomarker 

measurement for individual 𝑖 is independent of that individual’s true event time 𝑇𝑖
∗; (ii) any 

two measurements of the 𝑚𝑡ℎ biomarker taken on the 𝑖𝑡ℎ individual at two distinct time 

points 𝑡 and 𝑡′ (i.e. longitudinal or repeated measurements) are independent of one another; 

and (iii) any two measurements of two different biomarkers, taken on the 𝑖𝑡ℎ individual at 

some time point 𝑡 are independent of one another. It is worth noting however that the 

assumption of independence between longitudinal measurements taken at different time 

points conditional on 𝒃𝑖, is also a standard assumption of linear mixed models and not 

unique to joint models. 

For the univariate shared parameter joint model (i.e. one longitudinal outcome, such that 

𝑀 = 1) we obtain a slightly reduced set of conditional independence assumptions that do 

not involve the index 𝑚; that is 

 

𝑦𝑖(𝑡) ⊥ 𝑇𝑖
∗ | 𝒃𝑖, 𝜽 

𝑦𝑖(𝑡) ⊥ 𝑦𝑖(𝑡
′) | 𝒃𝑖, 𝜽 

(25) 

The key benefit of these conditional independence assumptions is that they entail a 

convenient factorisation of the likelihood function for the full joint model. That is, the joint 

distribution of the longitudinal and time-to-event data conditional on the individual-specific 

parameters is the product of the separate conditional distributions for each component. 

More specifically, with the conditional independence assumption in place, the likelihood 

for the 𝑖𝑡ℎ individual under the multivariate shared parameter joint model can be written as 

 𝐿𝑖 = ∫(∏∏𝑝(𝑦𝑖𝑗𝑚 | 𝒃𝑖, 𝜽)

𝑛𝑖𝑚

𝑗=1

𝑀

𝑚=1

)𝑝(𝑇𝑖, 𝑑𝑖  | 𝒃𝑖, 𝜽) 𝑝(𝒃𝑖 | 𝜽) 𝑑𝒃𝑖 (26) 

Importantly, this factorisation of the full likelihood helps facilitate estimation of the joint 

model.  
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2.3.5.2 Censoring and visiting processes 

Moreover, we require that, conditional on baseline covariates and observed longitudinal 

biomarker data for individual 𝑖, the 

(i) censoring process for the event outcome, and  

(ii) visiting process by which the observation times 𝑡𝑖𝑗 (for 𝑗 = 1,… , 𝑛𝑖) are 

determined 

are both independent of the true event time 𝑇𝑖
∗ and all missing or future unobserved 

longitudinal biomarker measurements.  

The assumption related to the censoring process is a relatively standard assumption 

required for most survival modelling approaches. Whilst the assumption related to the 

visiting process (i.e. the measurement schedule of the longitudinal outcome), has been 

relatively standard within the joint modelling literature. However, some authors have 

proposed methods to accommodate an informative visiting process; see for example Liu at 

el. (2008) and Han et al. (2014). Moreover, Rizopoulos et al. (2015) proposed an approach 

under which the joint model can be used to optimise the timing of future longitudinal 

measurements for a patient, conditional on their set of biomarker measurements observed 

prior to the current time.  

2.3.6 Extensions to the clustering structure 

A common feature of the shared parameter joint models described thus far has been that 

they consist of a two-level hierarchical structure. That is, the longitudinal response is 

assumed to be observed at time points (level 1) which are clustered within individuals (level 

2). The data structure therefore consists of two levels which are defined based on a single 

clustering factor, the individual. 

However, it is common in the health research setting for studies to give rise to observed 

data that contains more than one clustering factor. One example is a situation in which 

biomarker measurements are taken at time points (level 1) for patients (level 2) clustered 

within clinics (level 3). Another example is tumour size measurements taken at time points 

(level 1) for multiple tumour lesions (level 2) clustered within patients (level 3). Although 

these types of multilevel clustered data are common, they have not been discussed in the 

joint modelling literature.  
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One relevant exception is the meta-analysis of joint longitudinal and time-to-event data, 

which involves longitudinal measurements taken at time points (level 1) for patients (level 

2) clustered within studies (level 3). In a meta-analysis of either individual patient data or 

aggregate data, one may wish to allow for these two clustering factors (i.e. the individual 

and the study). Sudell et al. (2017) describe analysis methods for this type of data structure. 

However, their method is based on a two-stage meta-analytic approach that pools the study-

specific parameter estimates in the second stage, rather than directly specifying a single 

model for the three-level hierarchical structure of the individual patient data. 

In Chapter 6 of this thesis, a methodological framework will be presented for the joint 

analysis of longitudinal and time-to-event data in the presence of more than one clustering 

factor. The methods are motivated by an application in clinical oncology, whereby repeated 

measurements are taken on tumour lesions clustered within non-small cell lung cancer 

patients. However, the methods that are proposed can be more widely applied to a range of 

clinical and epidemiological contexts.   

2.3.7 Baseline hazards 

One other point of consideration in joint models is the specification of the baseline hazard 

in the event submodel. The most common approach in standard survival analysis has been 

to use the Cox proportional hazards model, in which the baseline hazard ℎ0(𝑡) is left 

unspecified. The main advantage of leaving the baseline hazard unspecified is that the 

researcher is no longer required to assume and specify some parametric form for the 

baseline hazard which, in some cases, may be overly restrictive. For instance, the widely 

used Weibull proportional hazards model enforces a monotonicity constraint on the 

baseline hazard function, which may not be realistic in some settings. 

However, there are two main disadvantages with leaving the baseline hazard unspecified 

in the context of joint modelling of longitudinal and time-to-event data. The first is that a 

common focus of joint modelling is to estimate future survival probabilities for individuals, 

whether they be individuals used in the estimation of the model (i.e. in sample) or new 

individuals for whom we may collect covariate and biomarker data in the future (i.e. out of 

sample). Leaving the baseline hazard unspecified means that survival probabilities cannot 

be directly calculated. Although approaches exist for deriving a non-parametric estimate of 

the baseline hazard, such approaches may not be desirable since they do not provide a 

smooth function for the baseline hazard and may be noisy in areas where there are few 
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events (e.g. the extremities of the observed time frame). The second reason that leaving the 

baseline hazard unspecified in joint modelling may be avoided is that it has been shown to 

result in an underestimate of the standard errors for the association parameter (Hsieh et al., 

2006). A consequence of this is that an alternative method, such as bootstrapping, should 

ideally be used to obtain correct standard errors. However, such approaches can be 

computationally intensive. 

An alternative approach, which avoids leaving the baseline hazard unspecified and also 

avoids the need to assume an overly simplistic parametric form for the baseline hazard, is 

to approximate the baseline hazard using a flexible non-linear function. A common choice 

has been to use some form of spline function, for example, restricted cubic splines 

(Crowther et al., 2012), B-splines (Rizopoulos, 2016), or M-splines (Proust-Lima et al., 

2017). As long as the knot locations and/or degrees of freedom are chosen appropriately, 

then cubic splines provide a flexible and relatively parsimonious way to approximate the 

underlying baseline hazard function. In addition, some authors have added a penalty to the 

spline function to avoid overfitting and reduce sensitivity to the choice of knot locations or 

degrees of freedom (Rizopoulos, 2016). Nonetheless, it has been suggested that results from 

flexible parametric survival models are generally quite robust to the choice of knot 

locations or degrees of freedom (Rutherford et al., 2015).  

Throughout this thesis, parametric forms will be used for the baseline hazard. This is 

because the software packages that will be used for fitting the models are all implemented 

with parametric forms for the baseline hazard. In some situations, this will be a simple 

parametric form, as for a Weibull distributed time-to-event outcome, and in other situations 

it will be a more flexible spline-based function. 

 Latent class joint models 

In the previous section, the focus was on the so-called shared parameter joint model. Under 

a shared parameter joint modelling approach, it is assumed that there is a single 

homogeneous population. Within that population, differences in event risk are attributable 

to between-individual differences in some aspect(s) of the underlying longitudinal 

biomarker histories in addition to covariates. 

A second, and alternative, modelling approach that has been proposed in the joint modelling 

literature is commonly known as a latent class joint model (Garre et al., 2007; Lin et al., 
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2002; Proust-Lima et al., 2014). In contrast to the shared parameter joint model, the latent 

class joint model assumes that there are multiple (i.e. more than one) heterogeneous groups 

within our population and that it is differences in the marginal (average) longitudinal 

profiles within each of these groups that explain the observed differences in event risk. That 

is, differences in event risk are not explained by between-individual differences in the 

longitudinal biomarker histories, but rather they are explained by the between-class 

differences in the longitudinal biomarker histories. The heterogeneous groups that are 

believed to exist are not themselves directly observable (i.e. we do not know which group 

an individual belongs to). These groups are therefore referred to as “latent classes”, to 

reflect the fact they are unobservable, and the probability of each individual 𝑖 belonging to 

each of the 𝐺 latent classes can be modelled. The latent class joint model therefore consists 

of at least three regression submodels which can be defined as follows. 

Class membership submodel 

It is assumed that individual 𝑖 (𝑖 = 1,… ,𝑁) belongs to one of the 𝑔 = 1,… , 𝐺 latent 

classes. Let the random variable 𝑐𝑖 denote the latent class to which individual 𝑖 belongs. 

The probabilities of individual 𝑖 belonging to each of the possible latent classes can be 

modelled through a multinomial logistic regression model  

 𝑃(𝑐𝑖 = 𝑔) =
exp (𝑣𝑖

′𝜉𝑔)

∑ exp (𝑣𝑖
′𝜉𝑔)𝑔

 (27) 

where 𝑃(𝑐𝑖 = 𝑔) denotes the probability that individual 𝑖 belongs to latent class 𝑔, and 𝑣𝑖 

is a vector of time-fixed covariates with an associated vector of class-specific population-

level (i.e. fixed effects) parameters 𝜉𝑔. For identifiability a reference class must be 

specified. This can be achieved, for example, by setting 𝜉1 = 0. 

Longitudinal submodel 

Similar to the definitions for the shared parameter joint model, suppose that 𝑦𝑖𝑗 = 𝑦𝑖(𝑡𝑖𝑗) 

corresponds to the value of a (longitudinal) biomarker observed at the 𝑗𝑡ℎ (𝑗 = 1,… , 𝑛𝑖) 

time point, 𝑡𝑖𝑗, for the 𝑖𝑡ℎ (𝑖 = 1,… ,𝑁) individual. A class-specific linear mixed model 

that assumes the expected value of the longitudinal biomarker evolves in continuous time 

can be specified as  
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𝑦𝑖(𝑡)|𝑐𝑖=𝑔  = 𝜇𝑖𝑔(𝑡) + 𝜀𝑖𝑔(𝑡) 

𝜇𝑖𝑔(𝑡) = 𝒙𝑖
′(𝑡)𝜷𝑔 + 𝒛𝑖

′(𝑡)𝒃𝑖𝑔 

(28) 

where 𝜇𝑖𝑔(𝑡) is the expected value of the biomarker for individual 𝑖 in class 𝑔 at time 𝑡, 

𝜀𝑖𝑔(𝑡) is a random (measurement) error term assumed to be drawn from a normal 

distribution with mean zero and variance σy
2,  𝒙𝑖(𝑡) and 𝒛𝑖(𝑡) are vectors of covariates, 

possibly time-dependent, with associated vectors of class-specific population-level (i.e. 

fixed effects) parameters 𝜷𝑔 and class-specific individual-level (i.e. random effects) 

parameters 𝒃𝑖𝑔. The individual-specific parameters are assumed to be normally distributed, 

with 𝒃𝑖𝑔 ~ 𝑁(0, 𝚺b) for some unstructured variance-covariance matrix Σ𝑏.  

In general, it is possible to extend the random effects structure by allowing the variance-

covariance matrix to differ across the latent classes, that is, assume 𝒃𝑖𝑔 ~ 𝑁(0, 𝚺bg). Here 

the subscript 𝑔 denotes that the variance-covariance matrix is class-specific. Similarly, one 

could allow the error variance to be class-specific, for example, specifying σyg
2  instead of 

σy
2. However, in practical terms, such flexibility can lead to difficulties with estimation 

(Proust-Lima et al., 2014). 

Event submodel 

Let 𝑇𝑖
∗ denote the event time for individual 𝑖, 𝐶𝑖 denote the right-censoring time, 𝑇𝑖 =

min (𝑇𝑖
∗, 𝐶𝑖) denote the observed event time, and 𝑑𝑖 = 𝐼(𝑇𝑖

∗ ≤ 𝐶𝑖) denote the event 

indicator. A class-specific proportional hazards model takes the form 

 ℎ𝑖(𝑡)|𝑐𝑖=𝑔 = ℎ0𝑔(𝑡) exp(𝒘𝑖
′(𝑡)𝜸𝑔) (29) 

where ℎ0𝑔(𝑡) is the class-specific baseline hazard at time 𝑡, and 𝒘𝑖(𝑡) is a vector of 

covariates, possibly time-dependent, with associated vector of class-specific population-

level (i.e. fixed effects) parameters 𝜸𝑔. The population-level parameters are assumed to be 

class-specific for generality, but for simplicity one could assume that they were common 

across all latent classes; that is, assume 𝜸𝑔 = 𝜸 for all 𝑔. Since the population-level 

parameters in each submodel are class-specific there is an association between the 

longitudinal and event outcomes that is induced through an individual’s class membership. 

In the next subsection the assumptions related to this dependence are more explicitly 

defined. 
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Conditional independence 

The latent class joint model assumes that within a given latent class 𝑔 (𝑔 = 1,… , 𝐺), and 

conditional on any other covariates in our event submodel, the expected event risk does not 

differ between individuals. More formally, a conditional independence assumption for the 

latent class joint model can be defined as 

 𝑦𝑖(𝑡) ⊥ 𝑇𝑖
∗ | 𝑐𝑖, 𝜽 (30) 

which defines that the longitudinal and event outcomes are independent, conditional on an 

individual’s latent class, 𝑐𝑖, and the combined vector of all remaining (fixed effect) 

parameters in the model, 𝜽. However, the individual-specific parameters are still required 

for the conditional independence between repeated measurements of the longitudinal 

outcome, that is 

 𝑦𝑖(𝑡) ⊥ 𝑦𝑖(𝑡
′) | 𝑐𝑖, 𝒃𝑖𝑔, 𝜽  (31) 

Various extensions to the standard latent class joint model have also been proposed, for 

example, accommodating multiple longitudinal biomarkers (Proust-Lima et al., 2009), 

recurrent events (Han et al., 2007), competing risks (Proust-Lima et al., 2016), or interval-

censored event times (Rouanet et al., 2016). 

Although the latent class joint modelling approach has not been as widely used as the shared 

parameter joint modelling approach it can provide benefits in some settings. In particular, 

the latent class joint model can potentially allow for a more flexible relationship between 

the biomarker and the event since it does not enforce a specific parametric form for the 

association between the two processes (Proust-Lima et al., 2014). Moreover, if we believe 

that there are in fact latent heterogeneous subgroups within the population, and our research 

question directly relates to the identification of these subgroups, then a latent class joint 

modelling approach may be more appropriate. For example, in the paper presented in 

Chapter 4 of this thesis, the aim is to identify groups of haemodialysis patients who are 

similar with regard to their longitudinal changes in BMI. Moreover, we would like to 

explore how the BMI trajectories for those groups are related to their risk of kidney 

transplantation or death. A latent class joint modelling approach lends itself to this type of 

research question. 
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 Estimation approaches 

2.5.1 Classical methods of estimation 

The models described in the previous sections can be estimated through maximisation of 

the full joint likelihood function. Recall from Section 2.3.1 that the full likelihood function 

for the standard shared parameter joint model can be specified as 

 𝐿𝑖 = ∫(∏𝑝(𝑦𝑖𝑗 | 𝒃𝑖, 𝜽)

𝑛𝑖

𝑗=1

)𝑝(𝑇𝑖, 𝑑𝑖  | 𝒃𝑖, 𝜽) 𝑝(𝒃𝑖 | 𝜽) 𝑑𝒃𝑖 (32) 

The most common approach for obtaining a maximum likelihood solution to equation (32) 

has been to use an expectation-maximisation (EM) algorithm (Gruttola and Tu, 1994; 

Henderson et al., 2000; Viviani et al., 2014). However, other approaches have also been 

used, for example, Newton-Rhapson (Crowther et al., 2012) or Marquardt (Thiébaut et al., 

2005) algorithms. 

Moreover, aside from the choice of maximisation algorithm, a major computational hurdle 

exists. Classical maximisation of the likelihood requires integration over the joint 

distribution of the individual-specific (i.e. random effects) parameters 𝒃𝑖, as shown in 

equation (32). In practice, numerical integration must be used since this integral generally 

has no tractable solution. Numerical integration approaches used in the joint modelling 

literature to date have included adaptive Gauss-Hermite quadrature (Crowther et al., 2012), 

pseudo-adaptive Gaussian quadrature (Rizopoulos, 2012a), or Monte-Carlo simulation 

(Thiébaut et al., 2005). It is worth noting however, that the need for such numerical 

integration techniques is not unique to joint models. Indeed, with the exception of linear 

mixed models (i.e. identity link, normal error distribution), which do have a tractable 

solution, the estimation of generalised linear mixed models also requires numerical 

integration techniques.  

Finally, another layer of numerical integration may be required in some settings where the 

association structure introduces time-dependency in the event submodel. Recall that under 

the standard shared parameter joint model, the contribution to the likelihood from the event 

submodel is 
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 𝑝(𝑇𝑖, 𝑑𝑖 | 𝒃𝑖, 𝜽) = ℎ𝑖(𝑇𝑖 | 𝒃𝑖, 𝜽)
𝑑𝑖 exp (−∫ ℎ𝑖(𝑠 | 𝒃𝑖, 𝜽)

𝑇𝑖

0

𝑑𝑠) (33) 

If, for example, the common current value association structure is used in the definition of 

the event submodel, then this introduces a time-varying covariate into the log hazard 

function ℎ𝑖(𝑡). In most situations, this will mean there is no closed-form solution to the 

integral that appears in the latter term of equation (33). Accordingly, one must use a 

numerical integration approach to evaluate the cumulative hazard 𝐻𝑖(𝑇𝑖) =

∫ ℎ𝑖(𝑠 | 𝒃𝑖, 𝜽)
𝑇𝑖
0

𝑑𝑠. A common approach in the joint modelling literature to date has been 

to use Gauss-Kronrod quadrature (Laurie, 1997), see for example Crowther et al. (2013) or 

Rizopoulos (2012a). 

2.5.2 Bayesian estimation 

An alternative to classical maximisation of the full joint likelihood is to obtain inferences 

from the joint model under a Bayesian approach. For the standard shared parameter joint 

model, one can specify a joint posterior distribution as 

 𝑝(𝒃𝑖, 𝜽 | 𝑇𝑖, 𝑑𝑖, 𝒚𝑖) ∝ (∏𝑝(𝑦𝑖𝑗  | 𝒃𝑖 , 𝜽)

𝑛𝑖

𝑗=1

)𝑝(𝑇𝑖 , 𝑑𝑖 | 𝒃𝑖, 𝜽) 𝑝(𝒃𝑖 | 𝜽) 𝑝(𝜽) (34) 

where 𝒚𝑖 denotes the vector collecting the longitudinal biomarker measurements for 

individual 𝑖, and 𝑝(𝜽) denotes the likelihood for the joint prior distribution across all 

remaining unknown parameters in the model. 

The posterior distribution in equation (34) does not require the individual-specific 

parameters 𝒃𝑖 to be integrated out of the likelihood function, as was the case for the classical 

estimation methods. Instead, Markov chain Monte Carlo (MCMC) methods can be used to 

obtain draws from the posterior distribution. With a sufficient number of draws, inferences 

can be made about the joint distribution of all model parameters, including 𝒃𝑖, conditional 

on the observed data. 

Various MCMC algorithms exist and can be used to obtain draws from the joint posterior 

distribution in equation (34). Arguably the most popular MCMC algorithm in Bayesian 

statistics has been the Gibbs sampler and this is also true for the Bayesian estimation of 

joint models. A number of early publications on joint modelling used Gibbs sampling as 
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the method of estimation (see for example Faucett and Thomas (1996) or Wang and Taylor 

(2001)). Gibbs sampling has also been used to estimate increasingly complex joint models; 

for example, those with multiple longitudinal biomarkers (Rizopoulos and Ghosh, 2011), 

two-part longitudinal submodels (Hatfield et al., 2011, 2012), or complex association 

structures (Mauff et al., 2017). One of the major factors contributing to the widespread use 

of Gibbs sampling was that it was the main estimation algorithm used by the popular 

Bayesian software packages BUGS (Lunn et al., 2000) and JAGS (Plummer, 2016). 

However, the ability to obtain valid inferences from a MCMC algorithm depends on two 

factors. First, that the algorithm converges from its initial location to the target posterior 

distribution. Second, that the correlation between subsequent draws in the MCMC chain 

(or those MCMC draws that are retained) is small enough such that the complete set of 

MCMC draws can be considered a “random” sample from the target posterior. However, 

when the target posterior distribution is high dimensional and/or has a complex geometry, 

MCMC algorithms such as Gibbs sampling can be slow to converge to the target 

distribution (Hoffman and Gelman, 2014). Therefore, more recently, there has been 

increasing interest in alternatives to Gibbs sampling. 

In particular, the introduction of the Bayesian software package Stan (Carpenter et al., 

2017) has meant that statistical models can now be more easily estimated using a variant 

of Hamiltonian Monte Carlo (HMC) (Hoffman and Gelman, 2014). In complex problems, 

the HMC algorithm can potentially avoid some of the inefficiencies associated with Gibbs 

sampling and other random walk MCMC algorithms. Specifically, under HMC, the random 

walk behaviour associated with Gibbs sampling and other random walk MCMC methods 

is replaced with a directed sampling path based on Hamiltonian dynamics (Neal, 2011). 

Therefore, some authors have recently used HMC for the estimation of joint models (see 

for example Desmee et al. (2017a) or Brilleman et al (2016)). In this thesis, Stan and its 

HMC implementation will be the primary method of estimation for the joint models 

described in Chapters 5 and 6. Further details on the estimation will be provided in those 

chapters. 

2.5.3 Two-stage joint models 

In general, it is computationally intensive to estimate joint models using the full joint 

likelihood function. For the most part, this is attributable to the fact there is a joint 

dependence of both the longitudinal and event outcomes on the individual-specific (i.e. 
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random effects) parameters. In many settings, the distribution of the individual-specific 

parameters may be of a relatively high dimension, for example, if one is allowing for 

flexible non-linear longitudinal trajectories through the use of splines or if the joint model 

includes multiple longitudinal biomarkers. In a classical estimation framework, one needs 

to integrate over the joint distribution of these individual-specific parameters, which can be 

a computationally demanding task. Whilst in a Bayesian framework, one needs to draw 

samples from the joint posterior distribution of all parameters, where the posterior 

distribution is likely to be high dimensional and have a complex geometry. 

To circumvent these computational difficulties, one approach has been to estimate the joint 

model in two stages (Albert and Shih, 2010; Bycott and Taylor, 1998; Ye et al., 2008a, 

2008b). In the first stage, the longitudinal submodel is estimated, whilst ignoring any 

information that is related to the event outcome. In the second stage, estimates from the 

longitudinal submodel (for example the expected value of the biomarker, or an estimate of 

the individual-specific parameters) are included in the estimation of the event submodel. 

This two-stage process allows separate estimation of each of the submodels, thereby 

decreasing the overall computational burden. However, separate estimation of the two 

submodels has two potential downsides. First, uncertainty in the estimates obtained for the 

longitudinal submodel in the first stage might not be carried through to the estimation of 

the event submodel in the second stage. Second, the time-to-event outcome (which is 

generally indicative of an informative dropout mechanism affecting the longitudinal 

process) is ignored entirely when the longitudinal submodel estimates are obtained in the 

first stage. For these reasons, several authors have identified that standard two-stage joint 

modelling approaches generally do not perform as well as joint modelling approaches based 

on the full joint likelihood (Sweeting and Thompson, 2011). 

A method described by Murawska et al. (2012) attempted to deal with the first of these 

issues. That is, the authors used a Monte Carlo simulation approach to capture uncertainty 

in their estimates of the longitudinal submodel parameters when fitting the event submodel 

in the second stage. However, more recently, there has been work towards developing a 

two-stage joint modelling approach that appropriately deals with both of the issues 

previously raised. Specifically, Moreno-Betancur et al. (2017) proposed a two-stage joint 

modelling approach for multiple longitudinal biomarkers and a time-to-event outcome. 

They used a multiple imputation approach to propagate uncertainty in the estimates from 

the first stage when estimating the event submodel in the second stage. Moreover, by 

42



 

including an estimate of the cumulative hazard and a modified event indicator in their 

imputation model they were able to correct their estimates in the first stage for the 

potentially informative missingness due to the event. The approach performed well under 

a variety of scenarios and, importantly, it was shown to be computationally fast relative to 

the full joint likelihood estimation approach. 

 Chapter summary 

This chapter has provided an overview of methods for the joint modelling of longitudinal 

and time-to-event data. Moreover, it has provided a review of some of the most important 

contributions to the joint modelling literature. The review has focussed on literature and 

methodology that is most relevant to the subsequent chapters of this thesis. It is important 

to recognise that the joint modelling literature is now large and a number of topics have not 

been discussed here. 
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Chapter 3:  Application of a shared parameter joint model: 

disaster exposure, disability and death in older Americans 

 Chapter introduction 

Although the last two decades have seen a huge amount of interest in joint modelling 

methodology, the uptake of joint modelling methodology in the applied literature has been 

limited. In the applied project described in this chapter, a shared parameter joint modelling 

approach was used to better understand associations between a community-level exposure 

variable related to major disasters and individual-level changes in disability and risk of 

death. The primary outcome data used in this project came from the Health and Retirement 

Study (HRS), an ongoing longitudinal cohort study carried out in the United States. 

Specifically, repeated measurements of a disability score (based on activities of daily 

living) were observed for each individual in the HRS. In addition, mortality outcomes were 

obtained via linkage to the national death index.  

The motivations for the study related to a hypothesis that major disaster events (for example 

earthquakes, hurricanes, or floods) would impact on the long-term disability trajectories of 

older individuals and/or their associated risk of death. A shared parameter joint modelling 

approach with a current value association structure allowed for the investigation of this 

hypothesis, whilst allowing for the implicit dependence between the disability trajectory 

and mortality. That is, the approach implicitly models deaths as informative dropouts in the 

longitudinal model, and in turns yields estimates in the survival model that correct for the 

discrete-time, imperfect observation of the disability function, which is truly an unobserved 

continuous process. 

In this study, one relatively non-standard form for the joint model was that the longitudinal 

submodel was based on a generalised linear mixed model with a negative binomial error 
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distribution and log link function. The use of a non-normally distributed longitudinal 

response variable has been relatively less common in applied joint modelling papers. Given 

the use of a log link function in the longitudinal submodel, the association structure for the 

joint model assumed that the log hazard of death for a given individual at time 𝑡 was linearly 

associated with their expected log disability score at time 𝑡. 

The main content of this chapter is presented in the next section, in the form of an applied 

research paper that has been published in the journal Social Science & Medicine: The model 

described in the paper was estimated using the JMbayes (Rizopoulos, 2016) R package. 

The supplementary material for the paper is provided in Appendix A of this thesis. 

 Manuscript 

This section herein contains the following applied research paper: 

Brilleman SL, Wolfe R, Moreno-Betancur M, Sales AE, Langa KM, Li Y, Daugherty 

Biddison EL, Rubinson L, Iwashyna TJ. Associations between community-level disaster 

exposure and individual-level changes in disability and risk of death for older 

Americans. Social Science & Medicine. 2017;173:118-125. 
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a b s t r a c t

Disasters occur frequently in the United States (US) and their impact on acute morbidity, mortality and
short-term increased health needs has been well described. However, barring mental health, little is
known about the medium or longer-term health impacts of disasters. This study sought to determine
if there is an association between community-level disaster exposure and individual-level changes in
disability and/or the risk of death for older Americans. Using the US Federal Emergency Management
Agency's database of disaster declarations, 602 disasters occurred between August 1998 and
December 2010 and were characterized by their presence, intensity, duration and type. Repeated
measurements of a disability score (based on activities of daily living) and dates of death were
observed between January 2000 and November 2010 for 18,102 American individuals aged 50e89
years, who were participating in the national longitudinal Health and Retirement Study. Longitudinal
(disability) and time-to-event (death) data were modelled simultaneously using a ‘joint modelling’
approach. There was no evidence of an association between community-level disaster exposure and
individual-level changes in disability or the risk of death. Our results suggest that future research
should focus on individual-level disaster exposures, moderate to severe disaster events, or higher-risk
groups of individuals.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

World-wide, the United States (US) has been ranked amongst
the top five countries most frequently experiencing a natural
disaster (Guha-Sapir et al., 2015). In 2010, 738 US counties, which

represent nearly one in four counties, experienced events devas-
tating enough to qualify for a US Federal Emergency Management
Agency (FEMA) disaster declaration. Most recently, FEMA reported
a total of 79 major disaster declarations for 2015; during preceding
years this figure reached as high as 242 (Federal Emergency
Management Agency, 2016a).

Disasters have been defined as “a situation or event which
overwhelms local capacity, necessitating a request to a national or
international level for external assistance; an unforeseen and often
sudden event that causes great damage, destruction and human
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suffering” (Guha-Sapir et al., 2015). Although the psychological
impacts of disasters have been widely studied (DiGrande et al.,
2011; Galea et al., 2005; North and Pfefferbaum, 2013), few
epidemiological studies have examined themedium or longer-term
health consequences of disasters beyond the realm of mental
health. Clearly, disasters may result in direct injury. We hypothe-
sized that disasters could also result in medium-term adverse
health impacts through two distinct community-level mechanisms
related to the physical (Sampson et al., 2016) and social (Hikichi
et al., 2016) environments of the community.

First, exposure to a disaster might worsen disability through the
disruption of the adapted environment that individuals had crafted
around themselves to mitigate physical risks for disability. Within
the healthcare system, disasters may disrupt ongoing medical care
for therapies ranging from daily insulin availability to longitudinal
chemotherapy courses. More subtly still, disasters may strip an
individual of the adaptations he or she uses to keep a physical ac-
tivity limitation from becoming a social disability. For example,
consider an individual with potentially limited mobility, but who
through the use of assistive devices and a careful understanding of
her local geography has mapped out routes without obstacles
allowing her to go to the store or church. Certainly disaster debris
will undo the effectiveness of these adaptations; but even after
clean-up, reconstructions along the paths of her life space may
present new and difficult barriers.

Second, exposure to a disaster might operate as a community-
level exposure because of its wider-ranging disruption on inter-
locking social support networks and institutions. Because such
networks are often informal, activated only upon a contingent
need, or because they involve several chains of connection, we
hypothesized that there might bemultiple points of brittleness that
are exposed to a disaster. We hypothesized that these disruptions
might unmask the social adaptations that are the counterpart to the
physical and environmental adaptations just discussed. Consider,
for example, an individual who does not currently suffer from a
physical activity limitation. A disaster may not physically interfere
with her body or home, however, the disaster might still lead to
disability if it disrupts those networks and institutions on whom
she depends to maintain her good health.

Current understanding of disasters' medium or longer-term
influence on disability or even death is scant and is largely based
on case studies of particular types of disasters or specific to certain
communities; thus generalizability is unclear (Aldrich et al., 2010;
Hendrickson and Vogt, 1996; Sastry and Gregory, 2013; Wade
et al., 2004). We therefore proposed to study the impact of a
range of disasters across an extended time period and impacting
many US communities to determine the potential association of
disaster exposure and subsequent disability or death.

2. Methods

We matched community-level disaster events to individual
outcomes for older Americans who were participating in a
representative longitudinal panel study. Individual outcomes
were death and a repeated measure of (instrumental) activities of
daily living, the latter being specifically a measure of functional
independence, but considered as a surrogate for disability in this
study. Since these two outcomes are endogenous in older people,
they must be modelled together (Marioni et al., 2014, 2015). Since
we were directly interested in both outcomes we chose to use
novel statistical methodology known as joint modelling
(Henderson et al., 2000; Rizopoulos, 2012; Wulfsohn and Tsiatis,
1997), which allowed us to simultaneously model the longitudi-
nal disability trajectory for each individual and their associated
risk of death.

2.1. Data and sample

We utilized data from the Health and Retirement Study (HRS),
a longitudinal panel survey that biannually followed a represen-
tative sample of US individuals over the age of 50 years and their
spouses (Sonnega et al., 2014). We included 18,102 individuals,
aged 50e89 years at baseline, who were enrolled in 1998 and had
at least one follow-up survey between 1st January 2000 and 30th
November 2010. Baseline, for each individual, was the date on
which they completed their first eligible survey. Since individuals
who complete a survey in the immediate aftermath of a disaster
are likely to be an unrepresentative group, a survey was consid-
ered ineligible if it occurred during the 6 months immediately
following a disaster (n ¼ 9111 surveys, 12%). The 1998 data were
only used to identify an individual's initial county of residence
(prior to baseline); county of residence was modified, if changed
at each wave, and modelled as if the change happened on the day
of that survey.

Disasters were identified through the FEMA Public Assistance
Program database (Federal Emergency Management Agency,
2016b), which contains all disaster declarations that qualified for
federal relief funding.We obtained datawhich included 602 unique
disaster declarations, starting on 411 unique dates between 22nd
August 1998 and 26th December 2010. To test our hypotheses
regarding the effects of disaster as a community-level exposure, we
needed to operationalize “community” in a concrete way. Disaster
events were matched to individuals based on their US county of
residence. County was the finest-grained level at which national
data on disaster exposure could be ascertained from this FEMA
database.

2.2. Variable definitions

2.2.1. Outcome variables
Activities of Daily Living (ADLs) and Instrumental Activities of

Daily Living (IADLs) were reported at each survey wave. We
formulated a score based on the sum of ADLs and IADLs. The score
took integer values between 0 and 11, inclusive, with higher values
corresponding to lower levels of functional independence, which
we consider a surrogate for higher levels of functional disability.We
refer to this measure as a disability score throughout the paper,
although we recognise that ADL/IADLs do not capture all the rec-
ommended dimensions of functioning and disability that are
described in the World Health Organisation's (WHO) International
Classification of Functioning, Disability and Health (ICF) framework
(World Health Organization, 2001).

Time-to-death was defined as time from baseline to the date of
death. An individual was censored if still alive on 30th November
2010.

2.2.2. Exposure variables
Different representations of the time-dependent disaster

exposure were considered, based on disaster presence, intensity,
duration and type. Disaster presence was the simplest form of
exposure variable used, and indicated whether an individual had
been exposed to a disaster during the two years prior to the cur-
rent observation time t. For modelling the association between
disaster exposure and disability, presence was operationalized as
a binary exposure: no disaster within the previous two years; or
disaster within the previous two years. For modelling the asso-
ciation between disaster exposure and death we separated out
acute and medium-term effects by defining presence as a three-
level categorical exposure: no disaster within the previous two
years; disaster within the previous two years but not within the
previous 21 days; or disaster within the previous 21 days. A period
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of 21 days was deemed to be adequate for capturing the majority
of deaths which would occur in the immediate aftermath of a
disaster.

Disaster intensity was defined as the cumulative amount of
FEMA funding for rebuilding d not upgrading d damaged public
infrastructure (in millions of US dollars) received for disasters
beginning within the previous two years. Each disaster event also
had a duration (in days), as determined by FEMA. We created an
exposure variable based on disaster duration, defined as the
cumulative duration of disasters beginning within the previous
two years. We categorised both disaster intensity and duration,
with the non-zero part of the distribution divided into five
equally-sized quantiles; cut-points for the categories are shown
in Table 5.

Disaster type was a binary indicator taking value 1 if the indi-
vidual experienced a disaster beginning sometime within the
previous two years and that disaster was of a specific type. The
types of disasters we considered, using FEMA's own categorization,
were: earthquake, fire, flood, hurricane, tornado, storm, snow, or
other.

2.2.3. Other covariates
Age at baseline was categorised as: �50, <60; �60, <65; �65,

<70; �70, <75; �75, <80; �80, <85; and �85, <90 years. Race was
categorised as: white/Caucasian; black or African American; or
other. Wealth was defined at baseline for each individual using
their total household (individual and spouse combined) wealth
(excluding housing values) (Smith, 1995), and categorised into ten
deciles ranging from decile 1 (most wealth) to decile 10 (least
wealth).

2.3. Modelling

The joint model used in the analyses consisted of two distinct
submodels: a longitudinal submodel for the disability score and a
survival submodel for time-to-death. The dependency between the
two outcomes is specified by allowing the survival submodel to
depend on the current expected value of the log disability score as
determined by the longitudinal submodel. This specification
implicitly models deaths as informative drop-outs in the longitu-
dinal model, and in turns yields estimates in the survival model
that correct for the discrete-time, imperfect observation of the
disability function, which is truly an unobserved continuous pro-
cess. Effectively, this is achieved by the simultaneous estimation of
all parameters. Alternative specifications for the association struc-
ture between the two outcomes are discussed in the Web
Appendix.

2.3.1. Longitudinal submodel
Let yi ¼ fyi1;…; yini

g denote the vector of all observed disability
measurements for individual i ði ¼ 1;…;NÞ where yij ¼ yiðtijÞ de-
notes a single observed disability measurement at time point tij
ðj ¼ 1;…;niÞ. We specified a generalised linear mixed model
yij � NBðmiðtijÞ;fÞ, where NBð:Þ represents the negative binomial
distribution with scale parameter f, and linear predictor related to
the mean via a log link function hiðtijÞ ¼ log ðmiðtijÞÞ with

hi
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where Aia, Gig and Rir are dummy variables for the baseline age,

gender and race categories respectively, Wiw are dummy variables
for the ten wealth deciles, Dijd are dummy variables for the time-
varying disaster exposure categories, b ¼ ðb0;…; b7dÞ is a vector
of fixed coefficients and bi ¼ ðb1i; b2iÞ is a vector of individual level
random coefficients (intercept and slope). We assume that
bi � MVNð0;SÞ.

2.3.2. Survival submodel
Let hiðtÞ denote the hazard of death for individual i at time t. We

assumed a proportional hazards model of the form

hiðtÞ ¼ h0ðtÞexp
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(2)

where h0ðtÞ is the baseline hazard (the hazard for an individual in
the reference category of all covariates) evaluated at time t, W*

i is a
numeric variable taking integer values for each of the wealth cat-
egories from 0 (decile 1) to 9 (decile 10), g ¼ ðg1a;…;g6dÞ is a vector
of fixed coefficients, and a1 is a fixed coefficient known as the as-
sociation parameter. Using the numeric variable W*

i , rather than
the dummy variables Wiw, allowed us to fit a linear trend across
wealth deciles, which was more parsimonious and resulted in little
difference in model fit. The baseline hazard in the survival sub-
model was approximated using a parametric penalised splines-
based method (Rizopoulos, 2016).

The coefficient a1 provides a measure of strength of the asso-
ciation between the longitudinal and survival processes. Disaster,
the exposure of interest, is present in both the longitudinal and
survival submodels and hence the regression coefficient(s) g6d
provide an estimate of the so-called direct effect of disaster on
death, that is, the effect not mediated by the impact of disaster on
disability.

2.3.3. Model estimation
We took a Bayesian approach to model estimation and used the

JMbayes package (Rizopoulos, 2016) in R 3.2.2 (Core Team, 2015) to
fit the model. JMbayes fits joint models using a Metropolis-based
Markov chain Monte Carlo (MCMC) algorithm. The Web Appendix
contains further details of the model estimation.

3. Results

3.1. Descriptive statistics

3.1.1. Baseline characteristics
Table 1 shows baseline characteristics of the 18,102 individuals

in the study cohort. The sample was relatively balanced in terms of
gender (57.8% female). The majority were white/Caucasian (83.1%),
with a substantial minority being black or African American
(13.4%). Therewas large variation in individual wealth, for example,
median wealth in the poorest and richest deciles, respectively, was
$400 and $1.3 million. The mean (SD) disability score at baseline
was 0.7 (1.9), with this increasing by age. There were 543 (3%) in-
dividuals with missing baseline wealth data who were excluded
from the regression modelling.

3.1.2. Outcome data
During the study period 67,135 disability score measurements

were observed, with a mean (max) of 3.8 (Sampson et al., 2016)
measurements per individual. Our joint model provides valid
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estimates under the assumption that missing disability measure-
ments at the survey level (3601 (5.1%) surveys) are missing at
random (Little and Rubin, 2002).

Fig. 1 shows the observed disability score trajectories for all
individuals, stratified by age category and whether the individual
died or was censored. A LOWESS smoothed average curve is over-
laid in each plot. On average, disability scores increased during
follow-up with some non-linearity also evident. Older individuals
had higher disability scores on average as well as having faster rates
of increase in disability. Individuals who died had higher average
disability scores than those who were censored, as well as faster
rates of increase in disability over time. By the censoring date of
30th November 2010, 5304 (30%) individuals had died.

3.1.3. Exposure data
Of the total follow up time for all individuals (148,485 person-

years), approximately 45% (67,210 person-years) was spent classi-
fied as exposed to a disaster within the previous 2 years. Of the
17,559 individuals included in the regressionmodelling, 6388 (37%)
were exposed to a disaster within the previous 2 years at baseline.
At the time of their terminating event (death or censoring) 6911
(39%) individuals were exposed to a disaster within the previous 2
years and 16,075 (92%) individuals had experienced at least one
disaster some time during the study period. The mean (max)
number of disasters experienced by each individual prior to death
or censoring was 3.6 (Rizopoulos, 2012), however, the incidence of
disaster exposure differed by disaster type (Table 2). Storm, hurri-
cane, and snow were the most frequently experienced types of

disaster event. In our discussion section we discuss why we may
have observed such high disaster incidence rates in this study.

Disasters types were clustered within geographical regions; for
example, hurricanes were experienced by 37% of individuals (25%
of person-disaster exposure events), yet 71% of those exposures
occurred within just two US states. The rates of disasters were
associated with individual-level baseline characteristics, in partic-
ular age and wealth (Tables S1 and S2 of Web Appendix).

3.2. Modelling

3.2.1. Associations between disaster exposure and disability or
death

There was no evidence that the presence of a disaster within the
previous 2 years was associated with any increase in disability
(disability score ratio ¼ 0.98, 95% CrI: 0.93, 1.03) (Table 3). We also
found very little evidence that the presence of a disaster within the
previous 2 years (but not within the previous 21 days) was asso-
ciated with any increase in the risk of death (HR ¼ 1.03, 95% CrI:
0.96, 1.11) (Table 4). There was large uncertainty around the hazard
ratio associated with disaster presence in the previous 21 days
(HR ¼ 0.96, 95% CrI: 0.75, 1.21), likely due to the small number of
deaths which occurred within this narrow time frame (n¼ 114, just
2% of the total number of deaths). There was also no evidence that
the mean disability score or risk of death increased in proportion to
disaster intensity or duration (Table 5); even for an individual in the
uppermost disaster intensity category (FEMA spending >$10
million) there was no evidence that the mean disability score was
higher than an individual who had not been exposed to any disaster
within the previous 2 years (HR ¼ 0.99, 95% CrI: 0.90, 1.07).

3.2.2. Associations between baseline characteristics and disability
or death

From the longitudinal submodel (Table 3) older age, less wealth,
and non-white race were associated with higher levels of disability.
The estimated annual increase in disability was also higher for in-
dividuals of older ages. Gender was not associated with the esti-
mated disability score. From the survival submodel (Table 4) older
age, being male, and less wealth were associated with a higher
hazard of death. The magnitude of the association between wealth
and the hazard of death diminished with increasing age.

3.2.3. Association between disability and death
There was evidence that the estimated disability score was

strongly associated with the hazard of death (Table 4). A twofold
increase in the estimated disability score for an individual (equiv-
alent to a 0.693 unit increase in the log disability score, as
expð0:693Þ ¼ 2) was associatedwith a 36% (HR¼ 1.36, calculated as
expð0:693� logð1:56ÞÞ, 95% CrI: 1.29, 1.41) increase in the hazard of
death, for given fixed values of the baseline covariates and disaster
exposure.

3.2.4. Exposure to specific disaster types
Table 6 shows disability score ratios and hazard ratios associated

with exposure to specific disaster types, with the binary exposure
variables for each disaster type all included in a single joint model.
The largest posterior means were associated with exposure to a
tornado (disability score ratio ¼ 1.20, 95% CrI: 0.86, 1.67; HR ¼ 1.66,
95% CrI: 1.12, 2.44), however, the statistical evidence to support
these associations was relatively weak (wide credible intervals),
potentially owing to the fact that tornados were relatively rare (662
person-disaster events, 1% of the total). The most prevalent disaster
types (storms, hurricanes, snow) did not appear to be associated
with increased disability or death.

Table 1
Baseline characteristics of the study cohort.

Characteristic Estimate

Total number of individuals 18102
Age at baseline (in years), n (%)
�50, <60 4000 (22.1%)
�60, <65 3580 (19.8%)
�65, <70 3256 (18.0%)
�70, <75 2526 (14.0%)
�75, <80 2188 (12.1%)
�80, <85 1610 (8.9%)
�85, <90 942 (5.2%)

Gender, n (%)
Female 10507 (58.0%)

Race, n (%)
White/Caucasian 14933 (82.5%)
Black or African American 2518 (13.9%)
Other 651 (3.6%)

Wealth at baseline by decile (in USD thousands), median (min, max)a

Decile 1 (most wealth) 1324.0 (857, 90708)
Decile 2 636.0 (495, 856)
Decile 3 398.6 (325, 494)
Decile 4 268.4 (223, 325)
Decile 5 187.0 (156, 223)
Decile 6 128.3 (105, 156)
Decile 7 83.6 (66, 105)
Decile 8 51.0 (36, 66)
Decile 9 20.0 (6, 36)
Decile 10 (least wealth) 0.4 (0, 6)

Disability score at baseline, mean (SD)
Stratified by age at baseline (in years)
�50, <60 0.4 (1.3)
�60, <65 0.5 (1.4)
�65, <70 0.6 (1.6)
�70, <75 0.6 (1.7)
�75, <80 0.9 (2.1)
�80, <85 1.5 (2.6)
�85, <90 2.6 (3.4)
Overall 0.8 (1.9)

USD, United States dollars; SD, standard deviation.
a There were 543 (3%) individuals with missing wealth data at baseline.
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3.2.5. Sensitivity analysis
In a sensitivity analysis (see Web Appendix) we refitted the

disaster presence joint model to the subset of individuals with a
baseline disability score of 0, 1 or 2 (“low” baseline disability). We
found a slight change in the estimated disability score ratio for

disaster exposure, such that it was positive, but the 95% credible
interval still incorporated a value of 1 (disability score ratio ¼ 1.04,
95% CI: 0.98 to 1.10). The estimates from the survival submodel
remained almost unchanged.

Fig. 1. Observed disability score trajectories for all individuals stratified by age category and whether the individual was censored or died. The red line overlaid in the plots is the
LOWESS smoothed average.
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4. Discussion

This study investigated the health impacts of a temporally
representative sample of disasters occurring in the US, rather than
considering single disaster events as case studies. We matched
community-level disaster exposures for a range of disaster types
(for example hurricanes, earthquakes, fires, tornados) to in-
dividuals participating in a nationally representative longitudinal
study of older Americans. We found no evidence of an association
between community-level disaster exposure and individual-level
changes in ADL/IADL outcome, the latter being a measure of

functional independence and a surrogate of disability. Similar re-
sults were obtained even when considering several different rep-
resentations (presence, intensity or duration) of disaster exposure.

Nonetheless, there are important limitations to our study that
need to be recognised. These are discussed in greater detail below,
but in brief, they include the inability of the community-level
exposure variable to accurately reflect individual-level exposure,
the potential for geographical or severity misclassification of di-
sasters when using county-level FEMA declarations, as well as the
potential insensitivity of the outcome measure to changes in
disability.

It may be that, contrary to our hypotheses, the effects of di-
sasters (with the magnitude observed during the study period) are
predominantly direct physical injury, without impact on social
cohesion and bonds. Alternatively, it may be that disasters do
impact on health by disrupting social cohesion and bonds, but that
this occurs at a level of granularity smaller than the county.
Counties in the US vary dramatically in terms of both land area and
population and, therefore, a disaster event is seldom large or
pervasive enough to impact all individuals living in that county. In
this sense, disasters may act as a community-level exposure on an
individual's disability, but there was sufficient misclassification in
our exposure variable such that we could not detect an effect.

There are also several possible mechanisms by which in-
dividuals or communities may find themselves resilient to the
impacts of disasters (Institute of Medicine, 2015). Social cohesion,
for example, may help to accelerate the recovery process following
a disaster, or may prevent a community from becoming frag-
mented at the time of the event. Pre-disaster social support net-
works have been found to reduce the risk of adverse mental health
outcomes following a disaster for individuals of low socioeco-
nomic status (Chan et al., 2015) and the elderly (Hikichi et al.,
2016). It is possible that social support networks are similarly
protective against the medium-term physical health impacts of
disasters for older people.

Table 2
Number of individuals experiencing each disaster type at least once, as well as the
total number of person-disaster events for each disaster type.

Disaster type Number of individuals
experiencing this disaster
type at least once (%)

Number of
person-disaster
events (%)

Storm 12944 (74%) 28894 (45.2%)
Hurricane 6415 (37%) 16090 (25.2%)
Snow 5496 (31%) 10436 (16.3%)
Fire 3229 (18%) 4291 (6.7%)
Flood 1083 (6%) 1294 (2.0%)
Tornado 662 (4%) 662 (1.0%)
Earthquake 259 (1%) 259 (0.4%)
Other 1943 (11%) 1943 (3.0%)
All disasters 16075 (92%) 63869 (100%)

Notes. The ‘storm’ category includes severe storm, severe ice storm or coastal storm.
The ‘other’ category includes dam/levee break, freezing, terrorist or not otherwise
specified. The percentages shown are: % of total individuals (left column) and % of
total person-disaster events (right column).

Table 3
Disability score ratios from longitudinal submodel of the fitted joint model for
disaster presence. Estimates presented are the posterior means and 95% credible
intervals.

Disability score ratio 95% credible interval

Constant 0.02 0.02, 0.03
Time (years) 1.03 1.01, 1.04
Age category (ref: �50, <60y)
�60, <65y 0.92 0.82, 1.03
�65, <70y 1.19 1.06, 1.33
�70, <75y 1.72 1.51, 1.95
�75, <80y 3.04 2.66, 3.48
�80, <85y 5.70 4.96, 6.64
�85, <90y 9.75 8.12, 11.79

Age category * time interaction
�60, <65y 1.05 1.03, 1.06
�65, <70y 1.10 1.08, 1.11
�70, <75y 1.18 1.16, 1.20
�75, <80y 1.22 1.20, 1.24
�80, <85y 1.27 1.25, 1.30
�85, <90y 1.27 1.24, 1.30

Gender (ref: Male)
Female 1.02 0.95, 1.09

Race (ref: White or Caucasian)
Black or African American 1.30 1.17, 1.44
Other 1.15 0.95, 1.37

Wealth category (ref: Decile 1, most wealth)
Decile 2 1.10 0.94, 1.30
Decile 3 1.27 1.08, 1.49
Decile 4 1.74 1.49, 2.05
Decile 5 1.86 1.61, 2.17
Decile 6 2.23 1.91, 2.60
Decile 7 3.06 2.60, 3.57
Decile 8 3.71 3.16, 4.32
Decile 9 5.28 4.46, 6.18
Decile 10, least wealth 9.52 8.12, 11.25

Disaster exposure
Within previous 2 years 0.98 0.93, 1.03

ref, Reference category.

Table 4
Hazard ratios from the survival submodel of the fitted joint model for disaster
presence. Estimates presented are the posterior means and 95% credible intervals.

Hazard ratio 95% credible
interval

Age category (ref: �50, <60y)
�60, <65y 2.40 1.54, 3.62
�65, <70y 3.58 2.52, 5.33
�70, <75y 3.80 2.65, 5.59
�75, <80y 5.81 4.12, 8.54
�80, <85y 7.88 5.39, 11.25
�85, <90y 9.88 6.65, 14.78

Gender (ref: Male)
Female 0.60 0.56, 0.65

Race (ref: White or Caucasian)
Black or African American 0.90 0.80, 0.99
Other 0.74 0.61, 0.92

Wealth trend across deciles
Linear trend (0 ¼ Decile 1; 9 ¼ Decile 10) 1.13 1.07, 1.18

Age category * wealth trend interaction
�60, <65y 0.93 0.87, 0.99
�65, <70y 0.91 0.86, 0.96
�70, <75y 0.93 0.88, 0.98
�75, <80y 0.91 0.86, 0.96
�80, <85y 0.89 0.85, 0.94
�85, <90y 0.88 0.83, 0.93

Disaster exposure
Within previous 21 days 0.96 0.75, 1.21
Within previous 2 years, but not 21 days 1.03 0.96, 1.11

Association parameter
Current value 1.56 1.45, 1.65

ref, Reference category.
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One of the strengths of this study was the disaster surveillance
design. This led to a broadly defined exposure variable which
incorporated a range of disaster types. In contrast withmost studies
in the literature, which consider single disaster events, our study
design can provide novel insight into the wider impact of disasters
on health outcomes. However, the generality of our exposure
means it is difficult to compare our results directly with those from
previous studies. Our exposure variable may have also been subject
to misclassification. The incidence of disaster exposure was very
high in this study. It may be that the FEMA definition of a disaster is
too broad to be meaningful in this context. Less severe events, for
example snow storms, may have attracted federal financial assis-
tance but may not have caused the “great damage, destruction and
human suffering” (Guha-Sapir et al., 2015) necessary to impact on
the disablement process of individuals living in the affected com-
munity. This has important implications for the interpretation of
our findings, since although our results showed no association
between community-level disaster exposure and disability or death
across a broad range of disaster exposures, it cannot be inferred that
specific disaster events do not have long-term impacts on disability.
It would be unreasonable to conclude that communities, or all
subgroups within a community, are resilient to the long-term im-
pacts of all disasters based on our study. Nonetheless, we found no

evidence of an association between disaster exposure and disability
evenwhen considering a graded exposure variable, such as disaster
intensity or duration.

Our analyses did not adjust for county-level clustering which
may have led to standard errors which were slightly narrow d

which would bias away from the null, reinforcing the lack of sta-
tistical association in our study. In a sensitivity analysis we reran
the joint model for disaster presence also including dummy vari-
ables for each US state of residence. We found the width of the 95%
credible intervals for the estimated effects of disaster exposure on
either disability or death were almost unchanged. Our analyses also
assumed that individuals remained in the same county of residence
between surveys, potentially introducing some misclassification of
disaster exposures. However, the number of misclassifications is
likely to be small since, for example, 16,028 (91%) individuals in our
analysis were residing in the same US state at all surveys (including
the 1998 wave) and, furthermore, 93.5% of all community-dwelling
respondents in the HRS lived in the same metropolitan statistical
area as at their prior wave, suggesting participants in the HRS are a
relatively non-transient population. Lastly, since we did not have
data on clinical or self-reported diagnoses of comorbidities we
were not able to adjust for individual-level comorbidities in the
regression analyses.

Although the sum of ADLs and IADLs has been widely used as a
measure of disability, there are several limitations to this outcome
measure that are worth highlighting. First, it is recognised that the
sum of ADLs and IADLs is likely to suffer from construct under-
representation when used as a measure of disability (Buz and
Cortes-Rodriguez, 2016). This refers to the fact that the ADL/IADL
measure is likely to capture only part of the disability construct that
we are truly interested in. That is, the sum of ADLs and IADLs is
likely to provide only an imperfect measure of functional disability,
and is more likely to provide ameasure of functional independence.
Second, a measure based on ADLs and IADLs is likely to exhibit
differential item functioning, especially with regards to age (Buz
and Cortes-Rodriguez, 2016; Fleishman et al., 2002; LaPlante,
2010). This suggests that the response probabilities for specific ADL
and IADL itemsmay be affected by age-related characteristics of the
individual that are not related to the underlying disability level.
Whether this leads to the sum of ADLs and IADLs being a biased
measure of the severity of disability is however uncertain (Buz and
Cortes-Rodriguez, 2016; LaPlante, 2010).

The analyses in this study were based on novel statistical
methodology, known as joint modelling. Joint models have been
widely discussed in the statistical literature in the last decade

Table 5
Disability score ratios and hazard ratios (posterior means and 95% credible intervals) associated with disaster intensity or disaster duration. Separate joint models were fit for
each of the exposure variables (i.e., 2 separate joint models). To save space, parameter estimates associated with the baseline covariates (age, gender, race, wealth) have been
omitted but were similar to those contained in Tables 3 and 4.

Disaster exposure variable Range of exposure category
(min to max)

Longitudinal submodel: Survival submodel:

Disability score ratios 95% credible interval Hazard ratios 95% credible interval

Disaster spending within previous 2 years (ref: $0)
>$0, Quintile 1 $892 to $295,828 0.97 0.90, 1.03 0.96 0.85, 1.08
>$0, Quintile 2 $295,877 to $1,198,329 0.97 0.90, 1.04 1.06 0.90, 1.22
>$0, Quintile 3 $1,203,047 to $3,405,042 0.96 0.88, 1.03 0.99 0.85, 1.16
>$0, Quintile 4 $3,432,852 to $9,906,982 1.03 0.95, 1.11 1.07 0.88, 1.27
>$0, Quintile 5 >$10 million 0.99 0.90, 1.07 1.07 0.93, 1.22

Total duration of disasters beginning within previous 2 years (ref: 0 days)
>0 days, Quintile 1 1 to 6 days 0.98 0.91, 1.05 1.03 0.90, 1.17
>0 days, Quintile 2 7 to 18 days 0.97 0.90, 1.04 1.01 0.88, 1.16
>0 days, Quintile 3 19 to 34 days 0.96 0.89, 1.03 1.00 0.88, 1.12
>0 days, Quintile 4 35 to 75 days 1.00 0.91, 1.09 1.04 0.89, 1.21
>0 days, Quintile 5 80 to 289 days 1.02 0.93, 1.12 1.06 0.89, 1.26

ref, Reference category.

Table 6
Disability score ratios and hazard ratios (posterior means and 95% credible intervals)
associated with different types of disasters; a single joint model was fit which
included 7 dummy variables (one for each disaster type). To save space, parameter
estimates associated with the baseline covariates (age, gender, race, wealth) have
been omitted but were similar to those contained in Tables 3 and 4 The estimates for
each disaster type are relative to a reference category of no disaster exposure (of that
type) within the previous 2 years.

Longitudinal submodel: Survival submodel:

Disability
score ratios

95% credible
interval

Hazard
ratios

95% credible
interval

Disaster exposure within previous 2 years
Storm 1.00 0.94, 1.05 1.03 0.95, 1.13
Hurricane 0.99 0.93, 1.05 1.03 0.92, 1.21
Snow 1.00 0.94, 1.07 1.05 0.91, 1.18
Fire 1.00 0.91, 1.09 0.99 0.85, 1.16
Flood 0.88 0.74, 1.05 0.73 0.43, 1.19
Tornado 1.20 0.86, 1.67 1.66 1.12, 2.44
Earthquake 0.98 0.72, 1.34 1.30 0.58, 2.53
Other 1.01 0.91, 1.11 0.95 0.74, 1.20

Notes. The ‘storm’ category includes severe storm, severe ice storm or coastal storm.
The ‘other’ category includes dam/levee break, freezing, terrorist or not otherwise
specified.
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(Crowther et al., 2012; Lawrence Gould et al., 2014; Sweeting and
Thompson, 2011; Tsiatis and Davidian, 2004), yet their presence
within the epidemiological literature remains limited. The slow
uptake of joint modellingmethods in the epidemiological literature
is likely a consequence of their recent development, their higher
degree of complexity compared with standard regression methods,
and their only very recent availability in mainstream statistical
software. Our study highlights the usefulness of these methods for
epidemiological research. We anticipate that joint models will
become more widely adopted by epidemiologists now that imple-
mentations are increasingly available for standard statistical soft-
ware packages (Lawrence Gould et al., 2014).

In conclusion, this study found no evidence of an association
between community-level disaster exposure and individual-level
changes in either disability or the risk of death. Nonetheless, due
to the limitations of the exposure variable, these findings should
not be used as a basis for policy decisions regarding the long-term
assistance provided to disaster-affected communities. Rather, our
findings suggest that future research should focus on individual-
level disaster exposures, moderate to severe events or disasters of
a common type, and potentially consider a focus on higher-risk
groups of individuals within the community.
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Chapter 4:  Application of a latent class joint model: BMI 

trajectories and risk of death or transplant in haemodialysis 

 Chapter introduction 

In end-stage kidney disease (ESKD) patients are at high-risk of mortality. However, within 

ESKD patients undergoing dialysis treatment, it has been commonly observed that 

overweight and obese patients seem to have better survival outcomes relative to those 

patients who are normal or underweight (Fleischmann et al., 1999; Kalantar-Zadeh et al., 

2005; Park et al., 2014). Since this relationship between weight and survival is the reverse 

of what is observed in the general population, it has been termed the “obesity paradox” 

(Sperrin et al., 2016). While a number of possible explanations have been proposed for the 

obesity paradox, there still has not been any clear consensus on what is its primary 

explanation (Schmidt and Salahudeen, 2007).  

One potential explanation for the obesity paradox is that previous studies have 

predominantly considered baseline or time-fixed measures of weight and have not 

investigated how longitudinal changes in body mass index (BMI) may be associated with 

mortality. In the study presented in this chapter, a latent class joint modelling approach was 

used to explore in patients on kidney dialysis the association between longitudinal changes 

in BMI and the rates of two competing events: kidney transplantation or death without 

transplantation. 

The study was conducted using a large registry-based population that included all ESKD 

patients initiating haemodialysis in Australia and New Zealand over a ten-year period. It 

was hypothesised that a latent class joint modelling approach would allow identification of 

underlying heterogeneous groups of haemodialysis patients that differed in terms of both 
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their marginal longitudinal BMI trajectories and their associated rates of the competing 

event outcomes. 

The main content of this chapter is presented in the next section, in the form of an applied 

research paper that has been recently submitted and is currently under review: The model 

described in the paper was estimated using the lcmm (Proust-Lima et al., 2017) R package. 

The supplementary material for the paper is provided in Appendix B of this thesis. 

 Manuscript 

This section herein contains the following applied research paper: 

Brilleman SL, Moreno-Betancur M, Polkinghorne KR, McDonald SP, Crowther MJ, 

Thomson J, Wolfe R. Longitudinal changes in body mass index and the competing 

outcomes of death and transplant in patients undergoing hemodialysis: a joint latent class 

mixed model approach. Submitted for publication. 
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Abstract 

Background: The relationship between 

body mass index (BMI) and patient survival in 

end-stage kidney disease in not well understood 

and has been the subject of much debate over 

recent years.  

Methods: This study used a latent class joint 

modelling approach to identify latent groups 

that underpinned associations between patterns 

of change in BMI during hemodialysis and two 

competing events: transplant and death without 

transplant. We included all adult patients who 

initiated chronic hemodialysis treatment in 

Australia or New Zealand between 2005 and 

2014. 

Results: There were 16,414 patients 

included in the analyses; 2,365 (14%) received 

a transplant, 5,639 (34%) died prior to 

transplant, and 8,410 (51%) were 

administratively censored. Our final model 

characterised patients based on five broad 

patterns of weight change (BMI trajectories): 

“late BMI decline” (about two years after 

commencing hemodialysis); “rapid BMI 

decline” (immediately after commencing 

hemodialysis); “stable and normal/overweight 

BMI”; “stable and morbidly obese BMI”; or 

“increasing BMI”. Mortality rates were highest 

amongst classes with declining BMI, and the 

timing of weight loss coincided with the timing 

of increases in mortality. Within the two stable 

BMI classes, death rates were slightly lower 

amongst the morbidly obese.  

Conclusions: Our findings provide some 

evidence to support the paradoxical protective 

effect of obesity against mortality. However, 

they also suggest that the shape of the BMI 

trajectory is important, with stable BMI 

trajectories being beneficial. Future research 

should be aimed at understanding the causes of 

weight changes during dialysis, to determine 

whether there could be strategies to improve 

patient survival. 

Introduction 

The relationship between body mass index 

(BMI) and patient survival in end-stage kidney 

disease (ESKD) has been the subject of intense 

interest and debate over recent years [1–3]. This 

has predominantly occurred as the result of 

consistent findings suggesting that, amongst 

patients undergoing hemodialysis treatment, 

those who are overweight and obese have 

superior survival outcomes than those who are 

normal or underweight [1,4]. This apparent 

protective effect of obesity in the hemodialysis 

population has been labelled the “obesity 

paradox” or more generally “reverse 

epidemiology”, owing to the fact that it is the 

opposite of what is seen in the general 

population where obesity is associated with 

increased mortality [5,6]. Interestingly, similar 
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associations have also been reported for other 

chronic disease populations, for example, 

patients with cardiovascular disease or heart 

failure [7,8].  

In the majority of studies involving patients 

with ESKD, body mass index (BMI) has been 

used as a measure of obesity. Moreover, early 

studies have predominantly considered baseline 

measures of BMI when examining the 

association between BMI and subsequent 

mortality risk [3]. However, an understanding 

of the relationship between BMI and mortality 

should ideally incorporate information about 

changes in BMI over the course of dialysis. It is 

likely that the mortality risk of a patient 

undergoing dialysis is related not only to their 

BMI at the time of initiating treatment, but also 

related to changes in their BMI leading up to 

their death or otherwise. Moreover, considering 

longitudinal changes in BMI and their 

association with mortality helps direct us 

towards a more meaningful clinical question, 

since it provides insight as to whether we might 

still be able to intervene (in the BMI pathway) 

even after the commencement of dialysis 

treatment [9]. Whether intervening on the BMI 

pathway is in fact able to provide a survival 

benefit for patients depends on the causal 

mechanisms underpinning any associations 

between weight change and mortality. 

Nonetheless, a first step is gaining an 

understanding of whether such associations 

(causal or otherwise) exist. 

Recent studies assessing the effect of early 

weight change after commencement of 

hemodialysis suggest that weight change is 

associated with survival (improved survival 

with weight gain, reduced survival with weight 

loss) [10–12]. In another study weight gain 

provided a survival benefit to patients with 

normal or low BMI, but not to obese subjects; 

however, this was assessed amongst prevalent 

hemodialysis patients rather than from 

hemodialysis commencement [13].  

A rapidly evolving field of statistical 

methodology, known as joint modelling, allows 

for the joint analysis of longitudinal changes in 

an outcome (here a clinical biomarker such as 

BMI) and the time to an event of interest [14–

17]. By jointly modelling the longitudinal and 

event outcomes, one can estimate the 

association between the two processes, as well 

as – under certain parametric modelling 

assumptions – the expected longitudinal process 

accounting for non-random dropout due to the 

event. More specifically, a latent class joint 

modelling approach is one in which underlying 

“latent” classes are assumed to capture the 

association between longitudinal changes in the 

biomarker and the risk of the event [18]. A latent 

class can be thought of as an underlying class 

(or group) of patients who are similar in their 

longitudinal marker trajectories (BMI over the 

course of hemodialysis) and event-risk profiles. 

Several latent classes are believed to exist, and 

although an individual’s class membership is 

not observable, it can be modelled. Latent class 

joint modelling approaches have been extended 

to model multiple competing events 

simultaneously; for example, receipt of a kidney 

transplant and death without transplant [19].  

In this study, we used a latent class joint 

modelling approach to characterise 

hemodialysis patients by BMI trajectories over 

the course of treatment and their association 

with the rates of transplant and death without 

transplant. We thus identified latent classes that 

underpin the associations between longitudinal 

BMI trajectories and the event rates. We used 

registry data that included all patients in 

Australia and New Zealand who initiated 

chronic hemodialysis treatment over a ten year 

period. 

Materials and methods 

Data and sample 

The Australia and New Zealand Dialysis and 

Transplant Registry (ANZDATA) collects data 

from all Australian and New Zealand renal units 

on a wide range of characteristics related to 

patients undergoing renal replacement therapy 

(RRT). Comprehensive demographic and 

comorbidity data is collected on each patient at 

the initiation of RRT. Longitudinal data is 

collected ongoingly, for example, dates on 

which a patient’s transplant status, survival 

status, or dialysis modalities are changed. In 

addition ANZDATA conducts annual surveys 

in which clinicians provide clinical information 

on each patient in the registry, for example, their 

most recent weight or treatment measurements 

[20].  

This study included all patients aged 18 

years and above who initiated dialysis in 
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Australia and New Zealand between 1/1/2005 

and 31/12/2014 and who, at 90 days after 

initiating dialysis (or at the time of death, 

transplant or censoring if this occurred earlier 

than 90 days), were recorded as receiving 

hemodialysis. We focus on hemodialysis since 

it is the more common modality worldwide 

(compared with peritoneal dialysis) and the 

majority of studies reporting the obesity 

paradox were based on hemodialysis patients. 

Each patient was followed up from the initiation 

of their dialysis treatment until the earliest of: 

(i) transplant; (ii) death without transplant; or 

(iii) administrative censoring (occurring on the 

earliest date of either 31/12/2014 or 5 years after 

initiating dialysis). The ANZDATA cohort is 

generally considered to be non-transient (due to 

age, health status, and nature of the treatment) 

and so we did not consider loss to follow up. 

Moreover, since only 3049 patients (18% of the 

analysis sample) remained at risk beyond 5 

years, it was deemed an appropriate maximum 

follow up time, to ensure we did not draw 

inferences based on time periods with much 

fewer events.  

Measurements of BMI during the follow up 

period were derived for each patient using their 

baseline height measured at the initiation of 

dialysis and longitudinal dry weight 

measurements reported as part of each 

ANZDATA survey. The weights reported in the 

survey are recorded by nursing staff. Clinically, 

they are used as the endpoint for dialysis 

treatment. Patients are weighed prior to 

treatment and the difference between that 

weight and their intended post-treatment dry 

weight (“ideal body weight”) is used to 

determine the fluid removal during dialysis.  

Diabetes was coded as yes (type I or II) or 

no, and each of the remaining comorbidities as 

yes (including suspected) or no. As the 

registry’s intent is to collect data on long-term 

chronic dialysis use for ESKD, our analyses 

excluded those patients who were recorded as 

having recovered kidney function after 

initiating dialysis. In addition, we excluded 

patients with missing comorbidity status, an 

unspecified race, a missing or extreme (<130 

cm) baseline height measurement, or an extreme 

(≥45, <17.5 kg/m2) BMI measurement. Figure 

S1 in the Supplementary Materials illustrates 

derivation of the analysis sample. 

Modelling 

Our latent class joint modelling approach 

aimed to capture the association between an 

individual’s unobserved “true” longitudinal 

BMI trajectory whilst undergoing hemodialysis 

treatment and their corresponding time to 

occurrence of either of the competing events: (i) 

transplant; or (ii) death without transplant. The 

modelling approach consisted of the following 

regression submodels.  

Class membership submodel 

We assumed that each individual 𝑖 (𝑖 =
1, … , 𝑁) belonged to one of a set of possible 

latent classes which differentiate types of BMI 

trajectory as well as being linked to the 

transplant and death outcomes. Since the true 

latent class membership for individual 𝑖 is 

unknown, the random variable 𝑐𝑖, the latent 

class to which individual 𝑖 belongs, remains 

unobserved and we model the probabilities of 

individual 𝑖 belonging to each of the possible 

latent classes through a multinomial distribution 

where 𝑃(𝑐𝑖 = 𝑔) = 𝜋𝑖𝑔 for latent classes 𝑔 =

1, … , 𝐺. This model specification assumes that 

an individual’s latent class membership does 

not depend on any of their observed 

characteristics.  

Longitudinal submodel for BMI trajectories 

The longitudinal BMI trajectory for 

individual 𝑖 is modelled using a class-specific 

linear mixed effects model. We let 𝐵𝑀𝐼𝑖𝑗 be the 

observed BMI measurement for individual 𝑖 at 

time 𝑡𝑖𝑗 (𝑗 = 1, … , 𝑛𝑖). To improve numerical 

stability and aid convergence of the model 

estimation procedure we model 𝑦𝑖𝑗 =
𝐵𝑀𝐼𝑖𝑗−25

10
 

where the standardizing of each BMI 

measurement around 25 kg/m2 and per 10 kg/m2 

merely scales the magnitude of all covariate 

effects in the subsequent model without 

affecting their relative values (in the results 

section we back-transform to enable 

interpretation on the BMI scale). We assume 

that outcomes in class 𝑔, 𝑦𝑖𝑗|𝑐𝑖=𝑔, follow: 

𝑦𝑖𝑗|𝑐𝑖=𝑔 = 𝑋𝑖𝑗
′ 𝛽𝑔 + 𝑢𝑖𝑔 + 𝜀𝑖𝑗  

where 𝑋𝑖𝑗 denotes a vector of covariates 

evaluated at time 𝑡𝑖𝑗 with associated class-

specific fixed effects 𝛽𝑔, 𝑢𝑖𝑔 denotes a class-
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specific random intercept term for individual 𝑖 
where we assume 𝑢𝑖𝑔 ∼ 𝑁(0, 𝜎𝑢

2), and 𝜀𝑖𝑗 ∼

𝑁(0, 𝜎𝑒
2) represents residual error. We allow for 

flexibility in the longitudinal trajectories 

through the use of cubic splines. Specifically, 

the vector 𝑋𝑖𝑗 contains both an intercept term 

and the time-dependent basis terms for natural 

cubic splines with two degrees of freedom and 

accordingly, the vector of class-specific 

parameters 𝛽𝑔 allows each latent class 𝑔 to have 

its own class-specific non-linear BMI 

trajectory. The individual-level random effects 

𝑢𝑖𝑔 allow for the correlation between repeated 

measurements on the same patient. In general 

the individual-level random effects can be 

extended beyond a random intercept, however 

we elected not to do so since the number of BMI 

measurements per individual was modest. 

Moreover, we did not include patient 

characteristics in the longitudinal submodel for 

the BMI trajectory. Some additional discussion 

around the choice of model structure is 

contained in the Supplementary Materials. 

Competing risks time-to-event submodel for 

transplant or death without transplant 

For the competing events of transplant and 

death without transplant we assumed class-

specific  Weibull proportional cause-specific 

hazard models. The class-specific hazard of 

death without transplant occurring at time 𝑡 for 

individual 𝑖 was modelled as 

ℎ𝑖1(𝑡)|𝑐𝑖=𝑔 = ℎ01𝑔(𝑡)𝑒𝑥𝑝 (𝑍𝑖
′𝛿1)   

where 𝑍𝑖 denotes the vector of baseline 

covariates for individual 𝑖 with associated 

vector of coefficients 𝛿1, and ℎ01𝑔(𝑡) denotes 

the class-specific baseline hazard of death 

without transplant evaluated at time 𝑡, assumed 

to have the form of the hazard of a Weibull-

distributed time-to-event outcome. Similarly, 

the class-specific hazard of transplant occurring 

at time 𝑡 for individual 𝑖 is 

ℎ𝑖2(𝑡)|𝑐𝑖=𝑔 = ℎ02𝑔(𝑡)𝑒𝑥𝑝 (𝑍𝑖
′𝛿2)   

where 𝛿2 and ℎ02𝑔(𝑡) are the corresponding 

vector of coefficients and class-specific baseline 

hazard for the competing event of transplant. 

The magnitude of the covariate effects, captured 

by the coefficient vectors 𝛿1 and 𝛿2, were 

assumed to be constant across latent classes. In 

both event submodels the vector 𝑍𝑖 includes 

covariates for age, gender, race (Caucasian, 

Aboriginal/Torres Strait Islander, Asian, 

Maori/Pacific Islander), calendar period for 

initiating RRT (2005-09, 2010-14; to capture 

temporal changes in risk that may have resulted 

from improvements in technologies and 

treatment over time), primary cause of renal 

disease (diabetes, glomerulonephritis, 

hypertension, other/uncertain), and comorbidity 

indicators (chronic lung disease, coronary artery 

disease, cerebrovascular disease, peripheral 

vascular disease, diabetes). Age was included in 

the model as a linear term (on the log hazard 

scale) for the number of years greater than age 

50 at the start of RRT; this provided a 

parsimonious way to accommodate the fact that 

age showed almost no association with the event 

outcomes below age 50, but a strong association 

with the event outcomes at older ages. 

Model estimation and comparison 

Our interpretation of the joint model focuses 

on the association between the “typical” 

longitudinal BMI trajectory for latent class 𝑔 

and the corresponding hazard functions for each 

of the competing events for latent class 𝑔. An 

understanding of the association is most easily 

obtained by plotting the predicted trajectories 

and hazard functions for each latent class.  

An important aspect of the modelling is 

determining the appropriate number of latent 

classes. The number of latent classes must be 

specified explicitly, however, the true number 

of latent classes is unknown. We compared 

models with varying numbers of latent classes 

using the Bayesian information criterion (BIC). 

BIC indicates the relative marginal likelihood 

of competing models, where the marginal 

likelihood penalizes free parameters. The model 

with the smallest BIC has the greatest support in 

the data [21]. A further consideration is 

meaningfulness of the latent classes. A 

sufficient number of patients in each latent class 

would lend clinical usefulness. Moreover, the 

model should provide classes that, from a 

clinical perspective, are sufficiently 

differentiated from one another to be 

informative. Although the model does not 

allocate each patient to a single latent class 

(rather it estimates their probability of being 

included in each latent class), we can allocate 

each patient to the class they have the highest 

estimated probability of being in. Our choice of 
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final model can then be informed by: (i) the 

number of patients allocated to each latent class 

in this way, and (ii) the magnitude and clinical 

importance of differences between the latent 

classes (with regard to the predicted 

longitudinal trajectories and hazard functions). 

We used the lcmm package in R [22,23]. 

Further computational details are contained in 

the Supplementary Materials. They include the 

model code, a description of the initial values 

used, computation time, a description of 

alternative model structures that we considered 

(e.g. a more complex individual-level random 

effects structure), and an assessment of 

goodness of fit for the final model. A GRoLTS 

(Guidelines for Reporting on Latent Trajectory 

Studies) checklist is also included in the 

Supplementary Materials [24]. 

 

Results 

Descriptive statistics 

A total of 19,264 patients initiated 

hemodialysis during the study period. 

Following exclusions (see Supplementary 

Materials) there were 16,414 patients with at 

least one BMI measurement recorded prior to 

death, transplant or censoring who were 

included in the main analyses. Median (IQR) 

follow-up time was 2.3 (1.0, 4.3) years. The 

percentage of patients with 1, 2, 3, 4, and 5 BMI 

measurements respectively (prior to death, 

transplant or censoring) was 18%, 21%, 17%, 

14% and 30%. Not all patients had their first 

BMI measurement taken at baseline (i.e. at the 

time of their initiating dialysis); the median 

(IQR) time to the first BMI measurement was 

0.45 (0.22, 0.71) years. Figure S2 

(Supplementary Materials) shows observed 

BMI trajectories for a random sample of 

patients. 

Of the 16,414 patients, 2,365 (14%) received 

a transplant, 5,639 (34%) died, and 8,410 (51%) 

were censored. Figure 1 shows crude 

cumulative incidence curves for the two 

competing events. An estimated 18% of patients 

receive a kidney transplant by 5 years while 

44% die (without transplant) within the same 

period.  

 

Determining the number of latent classes 

Table 1 shows a comparison of the models 

for a varying number of latent classes. The 

Bayesian information criterion (BIC) values 

suggested that higher numbers of latent classes 

consistently resulted in better fitting models (i.e. 

smaller BIC). This reflects the fact that in large 

datasets more complex models can easily 

appear justified based on statistical criterion 

alone. After examining the predicted BMI 

trajectories and hazard functions, we concluded 

that greater than five latent classes resulted in 

less useful and clinically meaningful 

characterisations (see Supplementary 

Materials).  

Our chosen model had five classes. The 

estimated mean probability of an individual 

being in their specified class (that is, the class 

for which they had the highest probability) 

ranged between 0.73 and 0.89 (Table S1, 

Supplementary Materials) and the relative 

entropy for the model was 0.745 (Table 1), 

suggesting that this model provided good 

discrimination. With six or more latent classes 

the relative entropy decreased slightly (Table 1). 

Modelling 

The left panel of Figure 2 shows the 

predicted longitudinal trajectories for each of 

the five latent classes. These are population 

average predictions, since the longitudinal 

submodel did not adjust for demographic or 

clinical characteristics.  

The first class contained the majority (75%) 

of patients, and was characterised by relatively 

“stable and normal/overweight BMI” over the 

course of hemodialysis. The second class 

contained 14% of patients and was categorised 

by “stable and morbidly obese BMI”. The next 

two classes were both characterised by 

declining BMI. One contained around 6% of 

patients and was characterised by slower and 

delayed decline in BMI (during the first two 

years of hemodialysis BMI remained relatively 

stable) whilst the other, which contained only 

2% of patients, was characterised by rapid 

decline in BMI from the initiation of 

hemodialysis. We refer to these classes as “late 

BMI decline” and “rapid BMI decline”. The 

fifth class, which contained 4% of patients, was 

the only class characterised by “increasing 

BMI”, and the average increase was 
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approximately 5 kg/m2 over the first 3 years of 

hemodialysis. 

Table 2 shows the characteristics of the 

patients, overall and stratified by their latent 

class membership. Overall, almost two thirds of 

the cohort were male, the majority were 

Caucasian, and comorbidities were common. 

Patients in the “increasing BMI” and “stable and 

morbidly obese BMI” classes were less likely to 

be in the oldest age groups (>70 years), were 

more likely to be Maori/Pacific Islander, have 

diabetes at initiation of RRT, and have diabetes 

as their primary cause of kidney disease. The 

characteristics of the “rapid BMI decline” class 

did not appear to differ from those of the “late 

BMI decline” class. Patients in the “stable and 

normal/overweight BMI” class were more 

likely to be in the older age groups, more likely 

to be Asian or Caucasian, and less likely to be 

diabetic. There were no large differences in the 

rates of current, former, and never smokers 

across the five latent classes. Patients with a 

single BMI measurement were almost 

exclusively allocated to the stable BMI classes. 

In Figure 2, we present class-specific 

estimates of the cause-specific hazard functions 

for transplant and death without transplant in the 

right and centre panels, respectively. These 

show the instantaneous rate (i.e. “hazard”) of 

each event at a given time t, amongst those 

individuals who are still at risk of the event. The 

estimates shown are for a Caucasian male aged 

≤50 years, with diabetic nephropathy, 

cerebrovascular disease and coronary artery 

disease, initiating dialysis between 2005-09. 

However, since our competing risks event 

submodels assumed proportional hazards, the 

relative comparison between latent classes will 

be similar regardless of a patient’s covariate 

profile. 

The highest rate of death without transplant 

was observed in the “rapid BMI decline” class, 

with a dramatic increase from the initiation of 

dialysis concurrent with the drop in BMI. This 

class also had an increasing rate of transplant 

receipt, beginning from the initiation of dialysis. 

The “late BMI decline” class had a relatively 

low rate of death without transplant during early 

treatment, however, once weight loss started to 

occur the rate of death increased. 

The two stable BMI classes had similar rates 

of death without transplant, but with the 

morbidly obese having slightly better survival 

than the normal/overweight. These two classes 

had different rates of transplant. The “stable and 

normal/overweight BMI” class had a relatively 

high incidence of transplant. Conversely, and as 

might be expected due to the relative 

contraindication of obesity to kidney 

transplantation, the “stable and morbidly obese 

BMI” class had a lower rate of transplant. The 

“increasing BMI” class generally had the lowest 

estimated rate of death without transplant and 

was the only group that showed a decreasing 

rate of transplant over the duration of dialysis. 

Table 3 shows the estimated hazard ratios 

quantifying the associations between the 

baseline covariates and the rate of each 

competing event. Through the latent class joint 

modelling approach, the hazard ratios are also 

adjusted for the BMI trajectories. There was 

strong evidence that comorbidities increased the 

rate of death without transplant and decreased 

the rate of transplant. Initiating dialysis in more 

recent years decreased the rate of death without 

transplant, and increased the rate of transplant. 

Maori/Pacific Islanders or Aboriginal/Torres 

Strait Islanders had much lower rates of 

transplant receipt compared with Caucasians, 

however, they had only a slightly higher rate of 

death without transplant.   

In the Supplementary Materials we present 

the cumulative incidence functions for each 

event. In contrast to the cause-specific hazard 

functions, the cumulative incidence functions 

show the cumulative risk (i.e. probability) of the 

event having occurred at any point up to time t. 

Although cumulative incidence functions can be 

useful, particularly for understanding patient 

prognosis, they are less aligned with 

understanding potential etiological associations 

[25].  

 

Discussion 

There is currently a limited understanding of 

the paradoxical relationship observed between 

BMI and mortality risk in ESKD patients 

undergoing hemodialysis when compared with 

the general population. This study investigated 

the association between longitudinal changes in 

BMI over the course of hemodialysis treatment 
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and the risk of kidney transplant and death 

without transplant using competing risks latent 

class joint models. This is one of only a few 

studies that have considered longitudinal 

changes in BMI rather than BMI values at the 

initiation of treatment alone. Similarly, it is one 

of the few studies to consider the competing 

risks of both death and transplant (treated here 

as distinct but competing events), which is 

particularly important given the marked effect 

of BMI on probability of receiving a kidney 

transplant, rather than considering BMI and its 

association with mortality only. 

We identified five broad patterns of weight 

change (BMI trajectories) following 

commencement of hemodialysis with an 

assessment of survival. Two classes were 

characterised by a decline in BMI, either “late” 

(about two years after commencing 

hemodialysis) or immediately from the start of 

dialysis. In both groups, the decline in BMI was 

associated with increasing mortality rates and 

risks. In the late BMI decline group, the 

temporal increase in the risk of death matched 

the decline in BMI seen at approximately two 

years post dialysis initiation. This suggests that 

the weight loss is indicative of an underlying 

illness leading to increased mortality rates. Both 

groups exhibited the greatest rates of death by 

the end of study period. 

Two of the remaining classes demonstrated 

stable weight during the study period and 

differed only by the starting weight; being either 

normal/overweight or in the (morbidly) obese 

range. Compared to the classes characterised by 

weight loss, death (without transplant) rates 

were lower amongst the stable BMI classes. 

Within the two stable BMI classes the death 

rates were slightly lower amongst the morbidly 

obese (potentially supporting the obesity 

paradox). However, these two classes with 

stable BMI differed quite markedly in their rates 

of transplantation. As might be expected from 

the relative contraindication of obesity to access 

to transplant programmes in Australia and New 

Zealand, obese patients appeared to have a 

much smaller chance of receiving a transplant.  

The final class was characterised by a 

progressive increase in weight following 

dialysis initiation, increasing further into the 

morbidly obese range over the course of 

dialysis. This group had relatively low rates of 

death and a relatively high rate of transplant, 

although the former increased during dialysis 

while the latter decreased. 

Amongst the baseline characteristics 

associated with the hazard of death, we found 

patients initiating dialysis more recently had 

better survival. This finding is consistent with 

the reduction in mortality seen in dialysis 

patients globally. Although there is no clear 

cause, likely contributors include improved 

cardiovascular disease treatment. 

Previous studies report that greater BMI or 

obesity at dialysis initiation appears protective 

against mortality in ESKD [1–4]. More recent 

work suggested that early weight gain in the 

first year after dialysis initiation was associated 

with improved survival with risk similar when 

stratified across BMI groups [12]. Another 

study suggested that any benefit in weight gain 

was seen only in patients with normal or low 

BMI at dialysis initiation and not in obese 

subjects [13]. However these studies did not 

treat or consider kidney transplantation as a 

competing risk. This study therefore adds to 

previous work aimed at explaining or 

disentangling the apparent paradoxical 

relationship between increased BMI and 

survival in dialysis patients. Here we show that 

it is the longitudinal weight change that is 

associated with differences in patient mortality 

rates and risk, with a beneficial effect of stable 

BMI that was consistent irrespective of the BMI 

at dialysis commencement (normal weight or 

morbidly obese). 

Although our final analysis focuses on the 

five-class model, it must be recognised that the 

choice of final model involves some 

subjectivity. Moreover, our final model 

included only a small percentage of patients in 

each of the classes with a non-stable BMI 

trajectory. Regardless of the chosen number of 

classes, we found that the majority of patients 

belonged to stable BMI trajectories: either a 

single stable BMI class containing the majority 

of patients (as in the two- through four-class 

models) or they were separated into two stable 

BMI classes that differed based on baseline 

BMI (normal/overweight versus morbidly 

obese, as in the models with more than five 

classes).Our study used a large registry-based 

cohort of all adult patients who initiated 

hemodialysis in Australia or New Zealand over 
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a ten-year period. We consider the findings are 

generalizable to the wider hemodialysis 

population in countries with similar population 

BMI profiles and dialysis care. However, it is 

likely that our results do not generalise to 

patients on peritoneal dialysis. Due to the 

glucose present in peritoneal dialysis solutions, 

we expect that the BMI trajectories may differ 

across the two modalities, especially during the 

early phase of treatment. 

Further strengths of this study include the 

use of an inception cohort (with very few 

exclusions due to missing data or loss to follow-

up), assessment of longitudinal changes in BMI, 

and treating transplant as a competing risk. 

However, it is important to recognise that the 

observational data used in this study only allows 

us to infer associations but not causal 

relationships. Even though this study 

considered longitudinal changes in BMI, and 

these changes in BMI preceded the event(s) of 

interest, our results do not imply that, for 

example, decreases in BMI caused mortality 

events. Rather we simply found that mortality 

events appeared to occur at a higher rate 

amongst those individuals who had decreases in 

their BMI, even after adjusting for the effects of 

demographics and comorbidities. For example, 

we cannot conclude whether deliberate weight 

loss among those who are overweight or obese 

is associated with the same increase in mortality 

as we observed in our cohort. 

Some limitations of this study need 

acknowledgment. The cohort included those 

individuals receiving hemodialysis 90 days after 

initiating any RRT for the first time (or at the 

point of death or transplant if that occurred 

earlier than 90 days), however, modality 

switching means that some individuals in our 

analysis did not remain on hemodialysis over 

the entire course of RRT. Specifically, there 

were 1,442 (9%) patients who received 

peritoneal dialysis at some time after 90 days. 

This is in line with previous studies which have 

shown that when modality switches occur, they 

predominantly occur earlier in the treatment 

period [26]. Another important aspect is the 

potential for bias due to selecting patients based 

on their modality type post-baseline (sometimes 

known as an immortal time bias). However, in 

our study a patient was still able to have an event 

during the first 90 days, so we would only 

expect an immortal time bias if their modality in 

the first 90 days is related to their mortality risk 

during that same period. Moreover, the number 

of events during the first 90 days was not large 

(562 deaths, 179 transplants) and, therefore, we 

would expect any bias due to our conditioning 

on 90-day modality status to be small.  

One additional consideration is that patients 

required at least one BMI measurement to be 

included in the analysis. Excluding individuals 

without any BMI measurement (e.g. if they died 

before a BMI measurement was obtained) may 

have induced a form of immortal time bias, 

however, we expect any such bias to be small 

since there were only 171 patients who did not 

have any BMI measurement. Lastly, our ability 

to accurately capture patient-specific 

longitudinal trajectories may have been 

improved by more frequent measurements of 

BMI.   

This study provides evidence to support the 

paradoxical protective effect of obesity against 

mortality. Amongst hemodialysis patients with 

a stable BMI trajectory, morbidly obese patients 

appeared to have slightly better survival rates 

than normal or overweight patients. However, 

our findings also suggest that the shape of the 

BMI trajectory is important, with stable BMI 

trajectories being beneficial. Progressive weight 

loss either following dialysis initiation or after 

two years of dialysis treatment, was strongly 

associated with poorer patient survival. 

However, the mechanism or effects leading to 

the weight loss cannot be determined by this 

study. The processes that lead to weight loss 

during dialysis are likely to be important in 

determining whether targeted interventions 

aimed at maintaining weight would improve 

probability of survival. Therefore future 

research should be aimed at understanding the 

causal mechanisms that lead to significant 

weight changes during dialysis treatment, to 

help determine whether targeted interventions 

could be successful in improving patient 

survival. 
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Table 1. Model comparison for varying numbers of latent classes. 

Number 

of latent 

classes 

Log- 

likelihood 

Number of 

parameters BIC 

Relative 

entropyb 

Percentage of patients allocated to each latent classa 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 

2 -29395.1 47 59246 0.741 91.94 8.06       

3 -28570.3 56 57684 0.750 88.57 6.50 4.93      

4 -27974.2 65 56579 0.757 85.73 5.56 5.43 3.28     

5 -27434.3 74 55587 0.745 74.72 13.76 6.18 3.86 1.47    

6 -27036.3 83 54878 0.695 71.10 14.20 6.63 3.50 3.08 1.50   

7 -26804.3 92 54502 0.716 70.90 12.93 5.83 5.47 2.98 1.36 0.53   

8 -26546.2 101 54073 0.698 69.50 13.19 6.56 5.23 2.10 1.60 1.34 0.49 

Abbreviations: BIC: Bayesian information criterion. 
a Patients are allocated to the latent class that they have the highest posterior probability of being in. 

b Relative entropy is calculated as 1 +
∑ ∑ �̂�𝑖𝑔log (�̂�𝑖𝑔)𝐺

𝑔=1
𝑁
𝑖=1

𝑁 log 𝐺
 where �̂�𝑖𝑔 is the estimated posterior probability of individual 𝑖 (𝑖 = 1, … , 𝑁) being in latent class 

𝑔 (𝑔 = 1, … , 𝐺). 
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Table 2. Patient characteristics, overall and stratified by latent class for the five-class model. Figures are number (and %) of patients, unless stated 

otherwise. 

 Class description  

Characteristic 

Stable and 

normal/overweight 

BMI 

Stable and 

morbidly  

obese BMI 

Late BMI 

decline 

Rapid BMI 

decline 

Increasing  

BMI Total 

Number of patients 12265 (74.7%) 2259 (13.8%) 1015 (6.2%) 241 (1.5%) 634 (3.9%) 16414 

Number of BMI measurements per patient       

   1 2546 (20.8%) 457 (20.2%) 7 (0.7%) 0 (0.0%) 6 (0.9%) 3016 (18.4%) 

   2 2904 (23.7%) 390 (17.3%) 54 (5.3%) 76 (31.5%) 29 (4.6%) 3453 (21.0%) 

   3 2146 (17.5%) 350 (15.5%) 157 (15.5%) 102 (42.3%) 93 (14.7%) 2848 (17.4%) 

   4 1544 (12.6%) 262 (11.6%) 278 (27.4%) 38 (15.8%) 115 (18.1%) 2237 (13.6%) 

   5 3125 (25.5%) 800 (35.4%) 519 (51.1%) 25 (10.4%) 391 (61.7%) 4860 (29.6%) 

Baseline BMI       

   Median (IQR) 25 (23, 28) 36 (34, 39) 31 (27, 34) 31 (26, 35) 32 (29, 35) 27 (23, 31) 

Baseline BMI, categoriesa       

   Underweight (less than 18.5 kg/m2) 241 (2.0%) 0 (0.0%) 5 (0.5%) 2 (0.8%) 0 (0.0%) 248 (1.5%) 

   Normal weight (18.5 to 24.9 kg/m2) 5476 (44.6%) 1 (0.0%) 149 (14.7%) 42 (17.4%) 60 (9.5%) 5728 (34.9%) 

   Overweight (25 to 29.9 kg/m2) 4845 (39.5%) 9 (0.4%) 257 (25.3%) 61 (25.3%) 176 (27.8%) 5348 (32.6%) 

   Obese (30 kg/m2 and over) 1703 (13.9%) 2249 (99.6%) 604 (59.5%) 136 (56.4%) 398 (62.8%) 5090 (31.0%) 

Year of initiating dialysis       

   2005 to 2009 6108 (49.8%) 972 (43.0%) 635 (62.6%) 108 (44.8%) 381 (60.1%) 8204 (50.0%) 

   2010 to 2014 6157 (50.2%) 1287 (57.0%) 380 (37.4%) 133 (55.2%) 253 (39.9%) 8210 (50.0%) 

Age (years) 65 (52, 75) 60 (50, 68) 63 (52, 72) 63 (49, 71) 59 (50, 68) 63 (52, 73) 

   Median (IQR)       

Age (years), categories       

   <30 478 (3.9%) 39 (1.7%) 29 (2.9%) 12 (5.0%) 19 (3.0%) 577 (3.5%) 

   31 to 40 734 (6.0%) 137 (6.1%) 58 (5.7%) 21 (8.7%) 47 (7.4%) 997 (6.1%) 

   41 to 50 1478 (12.1%) 395 (17.5%) 147 (14.5%) 32 (13.3%) 106 (16.7%) 2158 (13.1%) 

   51 to 60 2297 (18.7%) 637 (28.2%) 206 (20.3%) 47 (19.5%) 169 (26.7%) 3356 (20.4%) 

   61 to 70 2852 (23.3%) 633 (28.0%) 270 (26.6%) 68 (28.2%) 182 (28.7%) 4005 (24.4%) 
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   71 to 80 3193 (26.0%) 367 (16.2%) 254 (25.0%) 42 (17.4%) 90 (14.2%) 3946 (24.0%) 

   >80 1233 (10.1%) 51 (2.3%) 51 (5.0%) 19 (7.9%) 21 (3.3%) 1375 (8.4%) 

Gender       

   Male 8127 (66.3%) 1274 (56.4%) 578 (56.9%) 127 (52.7%) 338 (53.3%) 10444 (63.6%) 

   Female 4138 (33.7%) 985 (43.6%) 437 (43.1%) 114 (47.3%) 296 (46.7%) 5970 (36.4%) 

Race categories       

   Caucasian 9336 (76.1%) 1393 (61.7%) 764 (75.3%) 173 (71.8%) 391 (61.7%) 12057 (73.5%) 

   Aboriginal/Torres Strait Islander 1145 (9.3%) 244 (10.8%) 93 (9.2%) 25 (10.4%) 97 (15.3%) 1604 (9.8%) 

   Asian 888 (7.2%) 57 (2.5%) 28 (2.8%) 3 (1.2%) 25 (3.9%) 1001 (6.1%) 

   Maori/Pacific Islander 896 (7.3%) 565 (25.0%) 130 (12.8%) 40 (16.6%) 121 (19.1%) 1752 (10.7%) 

Chronic lung disease       

   No 10135 (82.6%) 1823 (80.7%) 827 (81.5%) 181 (75.1%) 519 (81.9%) 13485 (82.2%) 

   Yes 2130 (17.4%) 436 (19.3%) 188 (18.5%) 60 (24.9%) 115 (18.1%) 2929 (17.8%) 

Coronary artery disease       

   No 7028 (57.3%) 1258 (55.7%) 576 (56.7%) 127 (52.7%) 350 (55.2%) 9339 (56.9%) 

   Yes 5237 (42.7%) 1001 (44.3%) 439 (43.3%) 114 (47.3%) 284 (44.8%) 7075 (43.1%) 

Cerebrovascular disease       

   No 10306 (84.0%) 1961 (86.8%) 874 (86.1%) 199 (82.6%) 539 (85.0%) 13879 (84.6%) 

   Yes 1959 (16.0%) 298 (13.2%) 141 (13.9%) 42 (17.4%) 95 (15.0%) 2535 (15.4%) 

Peripheral vascular disease       

   No 9165 (74.7%) 1583 (70.1%) 745 (73.4%) 166 (68.9%) 421 (66.4%) 12080 (73.6%) 

   Yes 3100 (25.3%) 676 (29.9%) 270 (26.6%) 75 (31.1%) 213 (33.6%) 4334 (26.4%) 

Diabetes       

   No 6825 (55.6%) 604 (26.7%) 426 (42.0%) 93 (38.6%) 220 (34.7%) 8168 (49.8%) 

   Yes 5440 (44.4%) 1655 (73.3%) 589 (58.0%) 148 (61.4%) 414 (65.3%) 8246 (50.2%) 

Smoking statusb       

   Current 1582 (12.9%) 245 (10.8%) 129 (12.7%) 42 (17.4%) 92 (14.5%) 2090 (12.7%) 

   Former 5217 (42.5%) 1030 (45.6%) 450 (44.3%) 96 (39.8%) 246 (38.8%) 7039 (42.9%) 

   Never 5412 (44.1%) 972 (43.0%) 434 (42.8%) 102 (42.3%) 296 (46.7%) 7216 (44.0%) 

Primary cause of renal disease       

   Diabetes 4085 (33.3%) 1388 (61.4%) 433 (42.7%) 121 (50.2%) 346 (54.6%) 6373 (38.8%) 
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   Glomerulonephritis 2579 (21.0%) 355 (15.7%) 186 (18.3%) 40 (16.6%) 103 (16.2%) 3263 (19.9%) 

   Hypertension 1933 (15.8%) 187 (8.3%) 132 (13.0%) 25 (10.4%) 57 (9.0%) 2334 (14.2%) 

   Other/Uncertain 3668 (29.9%) 329 (14.6%) 264 (26.0%) 55 (22.8%) 128 (20.2%) 4444 (27.1%) 

Abbreviations: BMI: body mass index; IQR: interquartile range. 
a Categorisation based on the World Health Organisation (WHO) International Classification of adult underweight, overweight and obesity according to 

BMI. 
b There were 69 patients with unknown or missing smoking status. 
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Table 3. Hazard ratios (and 95% confidence limits) for the effects of baseline covariates on the hazard of transplant or death without transplant, as 

estimated under the five-class joint model and assuming constant effects over latent classes. 

Covariate Death without transplant Transplant 

Year of initiating dialysis (ref: 2005 to 2009)   

   2010 to 2014 0.87 (0.82 to 0.92) 1.24 (1.14 to 1.36) 

Gender (ref: Male)   

   Female 1.05 (0.99 to 1.11) 0.89 (0.81 to 0.97) 

Chronic lung disease (ref: No)   

   Yes 1.28 (1.21 to 1.37) 0.53 (0.44 to 0.63) 

Coronary artery disease (ref: No)   

   Yes 1.33 (1.25 to 1.41) 0.69 (0.61 to 0.78) 

Cerebrovascular disease (ref: No)  

   Yes 1.28 (1.20 to 1.37) 0.63 (0.51 to 0.76) 

Peripheral vascular disease (ref: No)  

   Yes 1.27 (1.19 to 1.35) 0.76 (0.65 to 0.89) 

Diabetes (ref: None)   

   Yes 1.24 (1.14 to 1.35) 0.64 (0.53 to 0.78) 

Primary cause of renal disease (ref: Diabetes)   

   Glomerulonephritis 0.75 (0.68 to 0.83) 1.22 (0.98 to 1.51) 

   Hypertension 0.96 (0.87 to 1.06) 0.86 (0.67 to 1.11) 

   Other/Uncertain 1.14 (1.04 to 1.25) 1.06 (0.86 to 1.32) 

Race categories (ref: Caucasian)   

   Aboriginal/Torres Strait Islander 1.01 (0.91 to 1.12) 0.15 (0.12 to 0.19) 

   Asian 0.62 (0.54 to 0.71) 0.63 (0.54 to 0.74) 

   Maori/Pacific Islander 1.13 (1.02 to 1.25) 0.24 (0.20 to 0.30) 

Number of years above age 50 at initiation of dialysis1 1.04 (1.03 to 1.04) 0.90 (0.89 to 0.90) 
1 “Number of years above age 50 at initiation of dialysis” is set equal to zero for ages below 50 years. For example age 45 would correspond to a covariate value of 0, 

whilst age 60 would correspond to a covariate value of 10.  
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Figure 1. Crude cumulative incidence curves (and 95% confidence limits) for the two competing 

events: transplant, and death without transplant. 
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Figure 2. Predicted longitudinal BMI trajectories (left panel) and cause-specific hazard functions for death without transplant (middle panel) and 

transplant (right panel) from the five-class model. The predictions are shown for each of the five possible latent classes. The BMI predictions are on 

average (since no covariates were included in the BMI submodel), whilst the event outcome predictions are for a Caucasian male, aged ≤50 years, 

initiating RRT between 2005-09 with diabetic nephropathy, cerebrovascular disease and coronary artery disease. The percentage of patients in each latent 

class is shown in parentheses in the plot legend. 
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Chapter 5:  Bayesian estimation of multivariate joint models 

 Chapter introduction 

Until recently there was a lack of general purpose software available for fitting multivariate 

joint models (for example, see Hickey et al. (2016) for a recent review). However, since 

2017, there have been several developments in this area.  

The joineRML (Hickey et al., 2017) R package was officially released on the 

Comprehensive R Archive Network (CRAN). In addition, a development version of the 

survtd (Moreno-Betancur et al., 2017) R package was made publically available on 

GitHub. Both the aforementioned packages can be used to estimate a shared parameter joint 

model with multiple continuous (i.e. normally distributed) longitudinal biomarkers. The 

former uses a full likelihood-based joint modelling approach, whilst the latter uses an 

extended two-stage joint modelling approach. However, both are currently limited to a 

current value association structure.  

A version of the JMbayes (Rizopoulos, 2016) R package was also released on CRAN that 

incorporates functionality for fitting multivariate joint models. The package currently 

allows for normal, Poisson, or Bernoulli distributed biomarkers, and provides significant 

flexibility in the definition of the association structure. Estimation of the model is 

performed under a Bayesian approach implemented using Gibbs sampling.  

Lastly, the work of this PhD led to the release of a version (2.17.0 and thereafter) of the 

rstanarm (Brilleman et al., 2018; Stan Development Team, 2017a) R package on CRAN 

that incorporates functionality for fitting multivariate joint models. The package allows for 

different types of longitudinal outcomes through a range of link functions and error 

distributions. Moreover, a variety of association structures are accommodated. The package 

also allows for joint model data with multiple clustering factors; these methods are 
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discussed in the next chapter, however, it is noteworthy that none the aforementioned 

packages currently accommodate such data structures.  

The remainder of this chapter will focus on describing the methodology, features, and 

performance of the joint modelling functionality in rstanarm. In Section 5.2, a peer-

reviewed conference paper is presented. The paper introduces the formulation of the 

multivariate joint model used in rstanarm, a description of how the model is estimated 

using the Bayesian software Stan, and an example application showing usage of the 

package. However, one area that is not covered in the paper is the Hamiltonian Monte Carlo 

(HMC) theory and methodology that underpins the estimation of models in Stan itself. A 

review of HMC is outside the scope of this thesis. Instead, the reader is referred to two 

publications that aim to provide a conceptual explanation of the theory of HMC, namely 

Neal (2011) and Betancourt (2017), as well as Hoffman and Gelman (2014) for technical 

details on the Stan implementation of the method. 

In Section 5.3, a simulation study is presented with the aim of evaluating the performance 

of the joint modelling functionality in rstanarm. As part of the simulation study, two 

additional R packages are described: simsurv (Brilleman, 2018b) and simjm (Brilleman, 

2018a). The former has been developed for simulating complex time-to-event data using 

the method of Crowther and Lambert (2013) and the latter for simulating joint longitudinal 

and time-to-event data. The motivation for including these packages in this thesis is that 

they help facilitate the simulation study. However, the simsurv package in particular is far 

more general, providing users with the opportunity to simulate time-to-event data from 

standard parametric distributions, two-component mixture distributions, hazard functions 

that incorporate time-dependent effects (i.e. non-proportional hazards), or flexible user-

defined hazard functions. Finally, in Section 5.4, a qualitative comparison is made between 

rstanarm and alternative software packages that are available for fitting multivariate joint 

models. 

 Conference paper 

This section herein contains the following peer-reviewed conference paper: 

Brilleman SL, Crowther MJ, Moreno-Betancur M, Buros Novik J, Wolfe R. Joint 

longitudinal and time-to-event models via Stan. In: Proceedings of StanCon 2018. 10-

12 Jan 2018. Pacific Grove, California, USA. https://github.com/stan-dev/stancon_talks 
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Note that some parts of the “Introduction” and “Model formulation” sections from the 

conference paper were presented in Chapter 2 of the thesis. 
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Joint longitudinal and time-to-event models
via Stan

Sam Brilleman∗, Michael Crowther, Margarita Moreno-Betancur,
Jacqueline Buros Novik, Rory Wolfe

Abstract
The joint modelling of longitudinal and time-to-event data has received much attention in the

biostatistical literature in recent years. In this notebook, we describe the implementation of a shared
parameter joint model for longitudinal and time-to-event data in Stan. The methods described in
the notebook are a simplified version of those underpinning the stan_jm modelling function that
has recently been contributed to the rstanarm R package. This notebook will proceed as follows.
In Section 1 we provide an introduction to the joint modelling of longitudinal and time-to-event
data, including briefly describing the potential motivations for using such an approach. In Section 2
we describe the formulation of a multivariate shared parameter joint model and introduce it’s log
likelihood function. In Section 3 we describe some of the more important features of the Stan code
required to implement the model. In Section 4 we present a short applied example to demonstrate
estimation of the model and the type of inferences that can be obtained. In Section 5 we close with a
discussion.

Date this notebook was compiled: 25 June 2018.

1 Introduction

Joint modelling can be broadly defined as the simultaneous estimation of two or more statistical models
which traditionally would have been separately estimated. When we refer to a shared parameter joint
model for longitudinal and time-to-event data, we generally mean the joint estimation of: 1) a longitudinal
mixed effects model which analyses patterns of change in an outcome variable that has been measured
repeatedly over time (for example, a clinical biomarker) and 2) a survival or time-to-event model which
analyses the time until an event of interest occurs (for example, death or disease progression). Joint
estimation of these so-called “submodels” is achieved by assuming they are correlated via individual-specific
parameters (i.e. individual-level random effects).

Over the last two decades the joint modelling of longitudinal and time-to-event data has received a
significant amount of attention [1-5]. Methodological developments in the area have been motivated
by a growing awareness of the benefits that a joint modelling approach can provide. In clinical or
epidemiological research it is common for a clinical biomarker to be repeatedly measured over time on a
given patient. In addition, it is common for time-to-event data, such as the patient-specific time from
a defined origin (e.g. time of diagnosis of a disease) until a terminating clinical event such as death or
disease progression to also be collected. The figure below shows observed longitudinal measurements
(i.e. observed “trajectories”) of log serum bilirubin for a small sample of patients with primary biliary
cirrhosis. Solid lines are used for those patients who were still alive at the end of follow up, while dashed
lines are used for those patients who died. From the plots, we can observe between-patient variation
in the longitudinal trajectories for log serum bilirubin, with some patients showing an increase in the
biomarker over time, others decreasing, and some remaining stable. Moreover, there is variation between
patients in terms of the frequency and timing of the longitudinal measurements.

∗Corresponding author: sam.brilleman@monash.edu.
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From the perspective of clinical risk prediction, we may be interested in asking whether the between-patient
variation in the log serum bilirubin trajectories provides meaningful prognostic information that can help
us differentiate patients with regard to some clinical event of interest, such as death. Alternatively, from
an epidemiological perspective we may wish to explore the potential for etiological associations between
changes in log serum bilirubin and mortality. Joint modelling approaches provide us with a framework
under which we can begin to answer these types of clinical and epidemiological questions.

More formally, the motivations for undertaking a joint modelling analysis of longitudinal and time-to-event
data might include one or more of the following:

• One may be interested in how underlying changes in the biomarker influence the occurrence of
the event. However, including the observed biomarker measurements directly into a time-to-event
model as time-varying covariates poses several problems. For example, if the widely used Cox
proportional hazards model is assumed for the time-to-event model then biomarker measurements
need to be available for all patients at all failure times, which is unlikely to be the case [3]. If simple
methods of imputation are used, such as the “last observation carried forward” method, then these
are likely to induce bias [6]. Furthermore, the observed biomarker measurements may be subject to
measurement error and therefore their inclusion as time-varying covariates may result in biased and
inefficient estimates. In most cases, the measurement error will result in parameter estimates which
are shrunk towards the null [7]. On the other hand, joint modelling approaches allow us to estimate
the association between the biomarker (or some function of the biomarker trajectory, such as rate
of change in the biomarker) and the risk of the event, whilst allowing for both the discrete time and
measurement-error aspects of the observed biomarker.

• One may be interested primarily in the evolution of the clinical biomarker but may wish to account
for what is known as informative dropout. If the value of future (unobserved) biomarker measure-
ments are related to the occurrence of the terminating event, then those unobserved biomarker
measurements will be “missing not at random” [8,9]. In other words, biomarker measurements
for patients who have an event will differ from those who do not have an event. Under these
circumstances, inference based solely on observed measurements of the biomarker will be subject to
bias. A joint modelling approach can help to adjust for informative dropout and has been shown
to reduce bias in the estimated parameters associated with longitudinal changes in the biomarker
[1,9,10].
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• Joint models are naturally suited to the task of dynamic risk prediction. For example, joint modelling
approaches have been used to develop prognostic models where predictions of event risk can be
updated as new longitudinal biomarker measurements become available. Taylor et al. [11] jointly
modelled longitudinal measurements of the prostate specific antigen (PSA) and time to clinical
recurrence of prostate cancer. The joint model was then used to develop a web-based calculator
which could provide real-time predictions of the probability of recurrence based on a patient’s up to
date PSA measurements.

In this notebook, we describe the implementation of a shared parameter joint model for longitudinal and
time-to-event data in Stan. In Section 2 we describe the formulation for a multivariate joint model, that
is, a joint model for multiple (i.e. more than one) longitudinal biomarkers and the time to a terminating
event. In Section 3 we describe the important features of the Stan code required to fit the model. In
Section 4 we present a brief applied example to demonstrate estimation of the model and the type of
inferences that can be obtained. Note that the methods and code described in this paper are a simplified
version of the stan_jm modelling function that is being contributed to the rstanarm R package [12,13],
see https://github.com/stan-dev/rstanarm or https://github.com/sambrilleman/rstanarm.

2 Model formulation

A shared parameter joint model consists of related submodels which are specified separately for each of
the longitudinal and time-to-event outcomes. These are therefore commonly referred to as the longitudinal
submodel(s) and the event submodel. The longitudinal and event submodels are linked using shared
individual-specific parameters, which can be parameterised in a number of ways. We describe each of
these submodels below.

2.1 Longitudinal submodel(s)

We assume yijm(t) = yim(tij) corresponds to the observed value of the mth (m = 1, ...,M) biomarker for
individual i (i = 1, ..., N) taken at time point tij , j = 1, ..., ni. We specify a (multivariate) generalised
linear mixed model that assumes yijm(t) follows a distribution in the exponential family with mean
µijm(t) and linear predictor

ηijm(t) = gm(µijm(t)) = xT
ijm(t)βm + zT

ijm(t)bim (1)

where xT
ijm(t) and zT

ijm(t) are both row-vectors of covariates (which likely include some function of
time, for example a linear slope, cubic splines, or polynomial terms) with associated vectors of fixed and
individual-specific parameters βm and bim, respectively, and gm is some known link function.

The distribution and link function are allowed to differ over the M longitudinal submodels. We assume
that the dependence across the different longitudinal submodel (i.e. the correlation between the different
longitudinal biomarkers) is captured through a shared multivariate normal distribution for the individual-
specific parameters; that is, we assume

 bi1
...
biM

 = bi ∼ Normal (0,Σ) (2)

for some unstructured variance-covariance matrix Σ.

2.2 Event submodel

We assume that we also observe an event time Ti = min (T ∗i , Ci) where T ∗i denotes the so-called “true”
event time for individual i (potentially unobserved) and Ci denotes the censoring time. We define an
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event indicator di = I(T ∗i ≤ Ci). We then model the hazard of the event using a parametric proportional
hazards regression model of the form

hi(t) = h0(t)exp
(
wT

i (t)γ +
M∑

m=1

Qm∑
q=1

αmqfmq(βm, bim; t)
)

(3)

where hi(t) is the hazard of the event for individual i at time t, h0(t) is the baseline hazard at time t,
wT

i (t) is a row-vector of individual-specific covariates (possibly time-dependent) with an associated vector
of regression coefficients γ (log hazard ratios), and the αmq are also coefficients (log hazard ratios).

The longitudinal and event submodels are assumed to related via an “association structure” based on
shared individual-specific parameters and captured via the

∑M
m=1

∑Qm

q=1 αmqfmq(βm, bim; t) term in the
linear predictor of equation (3). The coefficients αmq are referred to as the “association parameters” since
they quantify the strength of the association between the longitudinal and event processes, while the
fmq(βm, bim; t) (for some functions fmq(.)) can be referred to as the “association terms” and can be
specified in a variety of ways which we describe in the next section.

We assume that the baseline hazard h0(t) is modelled parametrically. For simplicity, in the formulation of
the joint model presented in this notebook we will restrict ourselves to modelling the log baseline hazard
using B-splines. Note however that in the rstanarm package’s stan_jm modelling function the baseline
hazard can be specified as either an approximation using B-splines (the default), a Weibull distribution,
or a piecewise constant baseline hazard (sometimes referred to as piecewise exponential). In the case
of the piecewise constant or B-splines baseline hazard, the user can control the flexibility by explicitly
specifying the knot points or degrees of freedom.

2.3 Association structures

As mentioned in the previous section, the dependence between the longitudinal and event submodels is
captured through the association structure, which can be specified in a number of ways. In this notebook,
we focus on the simplest association structure

fmq(βm, bim; t) = ηim(t) (4)

This is often referred to as a current value association structure since it assumes that the log hazard of
the event at time t is linearly associated with the value of the longitudinal submodel’s linear predictor
also evaluated at time t. This is the most common association structure used in the joint modelling
literature to date. In the situation where the longitudinal submodel is based on an identity link function
and normal error distribution (i.e. a linear mixed model) the current value association structure can be
viewed as a method for including the underlying “true” value of the biomarker as a time-varying covariate
in the event submodel.1

However, there are a variety of other association structures that could be specified. For example, we
could assume the log hazard of the event is linearly associated with the current slope (i.e. rate of change)
of the longitudinal submodel’s linear predictor, that is

fmq(βm, bim; t) = dηim(t)
dt

(5)

Moreover, there are a whole range of possible association structures, many of which have been discussed
in the literature [14-16]. Also note that the full set of association structures that are accommodated
in the rstanarm package’s stan_jm modelling function are not described here but are discussed in the
documentation for the stan_jm function itself.

1By “true” value of the biomarker, we mean the value of the biomarker which is not subject to measurement error or
discrete time observation. Of course, for the expected value from the longitudinal submodel to be considered the so-called
“true” underlying biomarker value, we would need to have specified the longitudinal submodel appropriately!
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2.4 Conditional independence assumption

A key assumption of the multivariate shared parameter joint model is that the observed longitudinal
measurements are independent of one another (both across the M biomarkers and across the ni time
points), as well as independent of the event time, conditional on the individual-specific parameters bi.
That is, we assume

Cov
(
yim(t), yim′(t)|bi

)
= 0 (6)

Cov
(
yim(t), yim(t′)|bi

)
= 0 (7)

Cov
(
yim(t), Ti|bi

)
= 0 (8)

for some m 6= m′ and t 6= t′.

Although this may be considered a strong assumption, it is useful in that it allows the full likelihood for
joint model to be factorised into the likelihoods for each of the component parts (i.e. the likelihoods for
each of the submodels and the likelihood for the distribution of the individual-specific parameters).

2.5 Log posterior distribution

Under the conditional independence assumption, the log posterior for the ith individual can be specified
as

p(θ, bi|yi, Ti, di) ∝ log
[(

M∏
m=1

ni∏
j=1

p(yijm|bi,θ)
)
p(Ti, di|bi,θ)p(bi|θ)p(θ)

]
(9)

which we can rewrite as

p(θ, bi|yi, Ti, di) ∝
(

M∑
m=1

ni∑
j=1

log p(yijm|bi,θ)
)

+ log p(Ti, di|bi,θ) + log p(bi|θ) + log p(θ) (10)

where
∑ni

j=1 log p(yijm|bi,θ) is the log likelihood for the mth longitudinal submodel, log p(Ti, di|bi,θ)
is the log likelihood for the event submodel, log p(bi|θ) is the log likelihood for the distribution of the
group-specific parameters (i.e. random effects), and log p(θ) represents the log likelihood for the joint
prior distribution across all remaining unknown parameters.2

We can rewrite the log likelihood for the event submodel as

log p(Ti, di|bi,θ) = di ∗ log hi(Ti)−
∫ Ti

0
hi(s)ds (11)

2In this notebook we assume normal prior distributions for all unbounded parameters (e.g. regression coefficients) and
half-normals for all lower-bounded parameters (e.g. standard deviations). However, in the rstanarm package there is a
variety of prior distributions available to the user. For the prior distribution for the variance-covariance matrix of the
group-specific parameters (i.e. the variance-covariance matrix for the individual-level random effects) we use a decomposition
of the variance-covariance matrix into a vector of standard deviations and a correlation matrix. We then place a half-Cauchy
prior distribution on each of the standard deviations, and use the LKJ correlation matrix distribution (parameterised
in terms of it’s Cholesky factor) as the prior for the correlation matrix of the group-specific parameters. Further details
of this prior distribution are described in the Stan User Manual and the implementation can be seen in the jm.stan file
included with this notebook. Importantly however, when using the stan_jm modelling function in the rstanarm package,
the user can control the hyperparameters related to this prior distribution. Moreover, the user can instead choose to place a
prior on a further decomposed version of the variance-covariance matrix, whereby the vector of standard deviations are
further decomposed into a trace and a simplex vector. This latter option is taken directly from the prior distribution
described for variance-covariance matrices in the rstanarm package’s stan_glmer modelling, and we refer the reader to the
documentation of that package for further details.
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and then use Gauss-Kronrod quadrature with Q nodes to approximate
∫ Ti

0 hi(s)ds, such that

∫ Ti

0
hi(s)ds ≈

Ti

2

Q∑
q=1

wqhi

(
Ti(1 + sq)

2

)
(12)

where wq and sq, respectively, are the standardised weights and locations (“abscissa”) for quadrature
node q (q = 1, ..., Q) [17]. In this notebook we choose to use Q = 15 quadrature nodes.3

Therefore, once we have an individual’s event time Ti we can evaluate the design matrices for the event
submodel and longitudinal submodels at the Q+ 1 necessary time points (which are the event time Ti

and the quadrature points Ti(1+sq)
2 for q = 1, ..., Q) and then pass these to Stan’s data block. We can

then evaluate the log likelihood for the event submodel by simply calculating the hazard hi(t) at those
Q+ 1 time points and summing the quantities appropriately. This calculation will need to be performed
each time we iterate through Stan’s model block. The Stan code required to evaluate this log posterior is
described in the next section.

3 Stan code

Here we describe the most important features of the Stan code used to estimate the joint model. The
full Stan code is provided in the separate jm.stan file supplied with this notebook. To simplify things
for the reader, we have limited ourselves to the situation in which M = 2 (i.e. we have two longitudinal
biomarkers) and each of those longitudinal outcomes is modelled using a linear mixed model (i.e. identity
link, normal distribution).

3.1 Data and transformed data blocks

The data block includes dimensions of the model, outcome vectors (e.g. observed biomarker values and
event times), design matrices for the different submodels, and hyperparameters for the prior distributions.
We do not discuss the data or transformed data blocks here in any detail.

3.2 Parameters block

Most of the parameters defined in the parameters block are “primitive” or “unscaled”, meaning that they
will be given a prior distribution with mean 0 and scale 1 and then converted into the actual parameters
used in the regression equation via the transformed parameters block. Our parameters block therefore
includes:

• y1_gamma, y2_gamma: the intercept for each of the longitudinal submodels. These intercept pa-
rameters are unbounded, given that each longitudinal submodel in our application consists of a
linear mixed model (i.e. in our application we assume an identity link function and normal error
distribution for each longitudinal biomarker).

• y1_z_beta, y2_z_beta: the primitive coefficients for each of the longitudinal submodels.
• e_z_beta, a_z_beta: the primitive coefficients and primitive association parameters for the event

submodel.
• y1_aux_unscaled, y2_aux_unscaled: the unscaled standard deviations (SD) of the residual errors

for each of the longitudinal submodels, combined into a single vector.
• e_aux_unscaled: the unscaled coefficients for the B-spline terms used in the baseline hazard.

The parameters block also includes the unscaled group-specific parameters (i.e. unscaled individual-level
random effects). We specify these as a matrix, with the number of rows in the matrix equal to
the total number of group-specific terms in the model, and the number of columns in the ma-
trix equal to the total number of patients in the data (i.e. the total number of “groups”). We

3The stan_jm modelling function in the rstanarm package allows the user to choose between Q = 15 (the default), 11,
or 7 quadrature nodes.
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declare a parameter vector that contains the standard deviations for each of the group-specific
parameters and a lower triangular matrix that corresponds to the Cholesky factor of the correlation
matrix for the group-specific terms. The latter is declared using Stan’s cholesky_factor_corr data type.

parameters {
real y1_gamma; // intercepts in long. submodels
real y2_gamma;
vector[y_K[1]] y1_z_beta; // primitive coefs in long. submodels
vector[y_K[2]] y2_z_beta;
vector[e_K] e_z_beta; // primitive coefs in event submodel (log hazard ratios)
vector[a_K] a_z_beta; // primitive assoc params (log hazard ratios)
real<lower=0> y1_aux_unscaled; // unscaled residual error SDs
real<lower=0> y2_aux_unscaled;
vector[basehaz_df] e_aux_unscaled; // unscaled coefs for baseline hazard

// group level params
vector<lower=0>[b_K] b_sd; // group level sds
matrix[b_K,b_N] z_b_mat; // unscaled group level params
cholesky_factor_corr[b_K > 1 ? b_K : 0]

b_cholesky; // cholesky factor of corr matrix
}

3.3 Transformed parameters block

The transformed parameters block includes code to alter the location and scale of the “primitive” or
“unscaled” parameters, in order to obtain the actual parameters used in the regression submodels.

Note that in the code below b_K is the number of group-specific parameters in the model, so if b_K > 1
then we will be estimating a correlation matrix for the group-specific parameters and, hence, we must
transform the primitive group-specific parameters using b_cholesky and b_sd, rather than b_sd alone.
If there was only one group-specific parameter in the model then there would be no correlation matrix
(i.e. no b_cholesky parameter). Also note that for any multivariate joint model (i.e. more than one
longitudinal outcome) we will have b_K > 1.

transformed parameters {
...
// coefs for long. submodels
y1_beta = y1_z_beta .* y1_prior_scale + y1_prior_mean;
y2_beta = y2_z_beta .* y2_prior_scale + y2_prior_mean;

// coefs for event submodel (incl. association parameters)
e_beta = e_z_beta .* e_prior_scale + e_prior_mean;
a_beta = a_z_beta .* a_prior_scale + a_prior_mean;

// residual error SDs for long. submodels
y1_aux = y1_aux_unscaled * y_prior_scale_for_aux[1] + y_prior_mean_for_aux[1];
y2_aux = y2_aux_unscaled * y_prior_scale_for_aux[2] + y_prior_mean_for_aux[2];

// b-spline coefs for baseline hazard
e_aux = e_aux_unscaled .* e_prior_scale_for_aux + e_prior_mean_for_aux;

// group level params
if (b_K == 1)

b_mat = (b_sd[1] * z_b_mat)';
else if (b_K > 1)
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b_mat = (diag_pre_multiply(b_sd, b_cholesky) * z_b_mat)';
}

3.4 Model block

The model block consists of several distinct parts. We describe each of these separately.

In the first part of the model block, we evaluate the linear predictor for each of the M longitudinal
submodels at the respective observation times. We then increment the target with the resulting likelihood.
To evaluate the linear predictor we call a user-defined function which is defined in the functions {}
block at the start of the jm.stan file. This function takes the form:

/**
* Evaluate the linear predictor for the glmer submodel
*
* @param X Design matrix for fe
* @param Z Design matrix for re, for a single grouping factor
* @param Z_id Group indexing for Z
* @param gamma The intercept parameter
* @param beta Vector of population level parameters
* @param bMat Matrix of group level params
* @param shift Number of columns in bMat
* that correpond to group level params from prior glmer submodels
* @return A vector containing the linear predictor for the glmer submodel
*/
vector evaluate_eta(matrix X, vector[] Z, int[] Z_id, real gamma,

vector beta, matrix bMat, int shift) {
int N = rows(X); // num rows in design matrix
int K = rows(beta); // num predictors
int p = size(Z); // num group level params
vector[N] eta;

if (K > 0) eta = X * beta;
else eta = rep_vector(0.0, N);

for (k in 1:p)
for (n in 1:N)

eta[n] = eta[n] + (bMat[Z_id[n], k + shift]) * Z[k,n];

return eta;
}

Such that the code in our model block is the following:

model {
//---- Log-lik for longitudinal submodels
{

// declare linear predictors
vector[y_N[1]] y1_eta;
vector[y_N[2]] y2_eta;

// evaluate linear predictor for each long. submodel
y1_eta = evaluate_eta(y1_X, y1_Z, y1_Z_id, y1_gamma, y1_beta, b_mat, 0);
y2_eta = evaluate_eta(y2_X, y2_Z, y2_Z_id, y2_gamma, y2_beta, b_mat, b_KM[1]);

// increment the target with the log-lik
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target += normal_lpdf(y1 | y1_eta, y1_aux);
target += normal_lpdf(y2 | y2_eta, y2_aux);

}
...

To evaluate the event submodel likelihood we must evaluate hi(Ti) for individuals who experienced the
event (i.e. di = 1) (i.e. the hazard at their event time) as well as the cumulative hazard

∫ Ti

0 hi(s)ds for all
individuals. Since we are going to evaluate the cumulative hazard using Gauss-Kronrod quadrature, this
means calculating the hazard hi(t) at 15 quadrature points between 0 and Ti for each individual i. To do
this, we have constructed the design matrices in R evaulated at the necessary times; these are passed to
Stan’s data block (not shown here) as e_Xq, y1_Xq, y2_Xq etc. In the code below there are several steps:

• In Step 1 we use the event submodel design matrices to evaluate the wT
i (t)γ part of the event

submodel’s linear predictor at the observed event times and the 15 quadrature points between 0
and Ti.

• The remainder of the event submodel’s linear predictor consists of the term corresponding to
the association structure:

∑M
m=1 αmηim(t). This involves the current value of the longitudinal

submodel’s linear predictor, so we must also evaluate the longitudinal submodel’s linear predictor
at the event times and the 15 quadrature points between 0 and Ti. This is shown in Step 2 of the
code below.

• In Step 3 we evaluate the log baseline hazard at the event times and the 15 quadrature points
between 0 and Ti.

• In Step 4 we combine the log baseline hazard with the event submodel linear predictor, that is, we
evaluate

log hi(t) = log h0(t) +
(
wT

i (t)γ +
M∑

m=1
αmηim(t)

)
• In Steps 5 and 6 the hazard evaluated at the event times is separated out from the hazard evaluated

at each of the quadrature points. The latter will be used in Step 7 to evaluate the approximate
cumulative hazard at the event time via the Gauss-Kronrod quadrature rule described in equation
(12).

• In Step 7 we evaluate the log likelihood for the event submodel as

log p(Ti, di|bi,θ) = di ∗ log hi(Ti)−
∫ Ti

0
hi(s)ds

The first term in Step 7 is the log hazard contribution to the log likelihood for the event submodel.
The second term is the log survival contribution to the log likelihood for the event submodel.
The latter is obtained by summing over the quadrature points to get the approximate integral
(i.e. cumulative hazard). Note that the qwts vector already incorporates the necessary scaling such
that the integral is evaluated over limits (0, Ti) rather than (−1,+1). We increment the target with
the resulting log likelihood.

//----- Log-lik for event submodel (Gauss-Kronrod quadrature)
{

vector[nrow_y_Xq[1]] y1_eta_q;
vector[nrow_y_Xq[2]] y2_eta_q;
vector[nrow_e_Xq] e_eta_q;
vector[nrow_e_Xq] log_basehaz;
vector[nrow_e_Xq] ll_haz_q;
vector[Nevents] log_haz_etimes;
vector[Npat_times_qnodes] log_haz_qtimes;

// Step 1: event submodel linear predictor at event time and quadrature points
e_eta_q = e_Xq * e_beta;

// Step 2: long. submodel linear predictor at event time and quadrature points
y1_eta_q = evaluate_eta(y1_Xq, y1_Zq, y1_Zq_id, y1_gamma, y1_beta, b_mat, 0);
y2_eta_q = evaluate_eta(y2_Xq, y2_Zq, y2_Zq_id, y2_gamma, y2_beta, b_mat, b_KM[1]);
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// Step 2 (continued): add on contribution from association structure to
// the event submodel linear predictor at event time and quadrature points
e_eta_q = e_eta_q + a_beta[1] * y1_eta_q + a_beta[2] * y2_eta_q;

// Step 3: log baseline hazard at event time and quadrature points
log_basehaz = basehaz_X * e_aux;

// Step 4: log hazard at event time and quadrature points
ll_haz_q = log_basehaz + e_eta_q;

// Step 5: log hazard at event times only
// (i.e. log hazard contribution to the likelihood)
log_haz_etimes = head(log_haz_q, Nevents);

// Step 6: log hazard at quadrature points only
log_haz_qtimes = tail(log_haz_q, Npat_times_qnodes);

// Step 7: log likelihood for event submodel
target += sum(log_haz_etimes) - dot_product(qwts, exp(log_haz_qtimes));

}

We then increment the target with the log priors for each of the intercepts, coefficients, auxiliary parame-
ters (including coefficients for the B-splines baseline hazard), and group-specific terms (i.e. individual-level
random effects):

//----- Log-priors

// intercepts for long. submodels
target += normal_lpdf(y1_gamma |

y_prior_mean_for_intercept[1], y_prior_scale_for_intercept[1]);
target += normal_lpdf(y2_gamma |

y_prior_mean_for_intercept[2], y_prior_scale_for_intercept[2]);

// coefficients for long. submodels
target += normal_lpdf(y1_z_beta | 0, 1);
target += normal_lpdf(y2_z_beta | 0, 1);

// coefficients for event submodel
target += normal_lpdf(e_z_beta | 0, 1);
target += normal_lpdf(a_z_beta | 0, 1);

// residual error SDs for long. submodels
target += normal_lpdf(y1_aux_unscaled | 0, 1);
target += normal_lpdf(y2_aux_unscaled | 0, 1);

// b-spline coefs for baseline hazard
target += normal_lpdf(e_aux_unscaled | 0, 1);

// group level terms
// sds
target += student_t_lpdf(b_sd | b_prior_df, 0, b_prior_scale);
// primitive coefs
target += normal_lpdf(to_vector(z_b_mat) | 0, 1);
// corr matrix
if (b_K > 1)

target += lkj_corr_cholesky_lpdf(b_cholesky | b_prior_regularization);
}
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4 Application

4.1 Data

In order to make this notebook freely available we use a motivating example based on a publically
accessible dataset. The Mayo Clinic’s widely used primary biliary cirrhosis (PBC) data contains 312
individuals with primary biliary cirrhosis, who participated in a randomised placebo controlled trial of
D-penicillamine conducted at the Mayo Clinic between 1974 and 1984 [18]. In our secondary analysis
of this trial data, our primary research is not concerned with the efficacy of the randomised treatment
but rather understanding how the clinical biomarker histories for these patients are associated with their
overall survival. Specifically, we focus on the associations between two repeatedly measured clinical
biomarkers, log serum bilirubin and serum albumin, and the risk of death. Given that the joint modelling
methods are computationally intensive we restrict our analyses to a small random subset of just 40 patients
from the PBC dataset. This ensures that the computation time for the joint models described in later
sections are kept to a minimum and therefore this notebook can be compiled in a relatively short time.
However, this also means that the clinical findings from this analysis should not to be overinterpreted.
Rather, this notebook aims to simply demonstrate the joint modelling framework and describe how these
models can be estimated using Stan.

The PBC data are contained in two separate data frames, each saved as an RDS object. The first
data frame (saved as “Data/pbcLong.rds”), contains multiple-row per patient longitudinal biomarker
information, as shown in
head(pbcLong)

## id age sex trt year logBili albumin platelet
## 1 1 58.76523 f 1 0.0000000 2.67414865 2.60 190
## 2 1 58.76523 f 1 0.5256674 3.05870707 2.94 183
## 3 2 56.44627 f 1 0.0000000 0.09531018 4.14 221
## 4 2 56.44627 f 1 0.4982888 -0.22314355 3.60 188
## 5 2 56.44627 f 1 0.9993155 0.00000000 3.55 161
## 6 2 56.44627 f 1 2.1026694 0.64185389 3.92 122

while the second data frame (saved as “Data/pbcSurv.rds”), contains single-row per patient survival
information, as shown in
head(pbcSurv)

## id age sex trt futimeYears status death
## 1 1 58.76523 f 1 1.095140 2 1
## 3 2 56.44627 f 1 14.151951 0 0
## 12 3 70.07255 m 1 2.770705 2 1
## 16 4 54.74059 f 1 5.270363 2 1
## 23 5 38.10541 f 0 4.120465 1 0
## 29 6 66.25873 f 0 6.852841 2 1

The variables included across the two datasets can be defined as follows:

• age in years
• albumin serum albumin (g/dl)
• logBili logarithm of serum bilirubin
• death indicator of death at endpoint
• futimeYears time (in years) between baseline and the earliest of death, transplantion or censoring
• id numeric ID unique to each individual
• platelet platelet count
• sex gender (m = male, f = female)
• status status at endpoint (0 = censored, 1 = transplant, 2 = dead)
• trt binary treatment code (0 = placebo, 1 = D-penicillamine)
• year time (in years) of the longitudinal measurements, taken as time since baseline)
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4.2 Estimation using the simplified jm.stan file

We fit a multivariate joint model to the two longitudinal biomarkers, log serum bilirubin and serum
albumin, and time-to-death. Note that patients are censored if they had a transplant prior to death
(here we ignore the fact that this is likely to be informative censoring). We fit a linear mixed model
(identity link, normal distribution) for each biomarker with a patient-specific intercept and linear slope
but no other covariates. In the event submodel we include gender (sex) and treatment (trt) as baseline
covariates. Each biomarker is assumed to be associated with the log hazard of death at time t via it’s
expected value at time t (i.e. a current value association structure).

To save needing to carry out any data manipulation steps we instead used the stan_jm modelling
function in rstanarm to generate the R list for passing to rstan. This data is saved as an RDS object
and supplied with the notebook (“Stan/standata.rds”). In addition, a function to generate a list of initial
values has also been supplied as an RDS object with the notebook (“Stan/staninit.rds”). Of course, the
stan file containing the model is also supplied (“Stan/jm.stan”). We can therefore estimate this model
using the rstan package:

standata <- readRDS("Stan/standata.rds")
staninit <- readRDS("Stan/staninit.rds")
mod1 <- with_filecache(

stan(
file = "Stan/jm.stan",
data = standata,
init = function() staninit,
chains = 2, seed = 12345),

filename = "mod1.rds")

Since our primary interest is in the association between the current value of each of the biomarkers
(log serum bilirubin and serum albumin) and the hazard of death, we focus on the estimated associ-
ation parameters. The summary of the posterior distribution for each of the association parameters follows:

print(mod1, pars = "a_beta")

## Inference for Stan model: jm.
## 2 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=2000.
##
## mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
## a_beta[1] 0.74 0.01 0.29 0.20 0.54 0.73 0.93 1.36 2000 1.00
## a_beta[2] -3.21 0.02 0.72 -4.79 -3.63 -3.17 -2.72 -1.92 838 1.01
##
## Samples were drawn using NUTS(diag_e) at Fri Mar 09 12:25:30 2018.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

We see that a one unit increase in log serum bilirubin is associated with a 0.72 (95% CrI: 0.17 to 1.29)
unit increase in the log hazard of death, equivalent to a 2.05-fold (95% CrI: 1.19 to 3.63) increase in the
hazard of death. Similarly, a one unit increase in serum albumin is associated with a 3.23 (95% CrI: 1.90
to 4.77) unit decrease in the log hazard of death. These estimates are broadly in line with what we would
expect from a clinical perspective; that is, that higher serum bilirubin is associated with worse patient
outcomes (i.e. higher risk of mortality), whilst higher serum albumin is associated with better patient
outcomes (i.e. lower risk of mortality). However, recall that we have estimated this model with a very
small dataset only used for demonstration purposes. Moreover, the number of mortality events (N = 29)
is even less than the number of patients since some patients are censored.
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4.3 Estimation using the joint modelling functionality in rstanarm

The jm.stan file provided with this notebook is a simplified version of the Stan code underlying
the stan_jm modelling function in the rstanarm package. However, estimating the model using the
rstanarm provides us with much nicer output (for example, meaningful variable names!) as well as a
broad range of post-estimation functionality, including model diagnostics, posterior predictions, dynamic
predictions and more.

To see this, we can use the development version of rstanarm with joint modelling functionality to refit
our model, this time using stan_jm with the customary R formula syntax and data frames:

mod2 <- with_filecache(
stan_jm(

formulaLong = list(
logBili ~ year + (year | id),
albumin ~ year + (year | id)),

formulaEvent = survival::Surv(futimeYears, death) ~ sex + trt,
dataLong = pbcLong, dataEvent = pbcSurv,
time_var = "year", assoc = "etavalue", basehaz = "bs",
chains = 2, seed = 12345),

filename = "mod2.rds")

We can now examine the output from the fitted model, for example

print(mod2)

## stan_jm
## formula (Long1): logBili ~ year + (year | id)
## family (Long1): gaussian [identity]
## formula (Long2): albumin ~ year + (year | id)
## family (Long2): gaussian [identity]
## formula (Event): survival::Surv(futimeYears, death) ~ sex + trt
## baseline hazard: bs
## assoc: etavalue (Long1), etavalue (Long2)
## ------
##
## Longitudinal submodel 1: logBili
## Median MAD_SD
## (Intercept) 0.665 0.184
## year 0.229 0.041
## sigma 0.354 0.017
##
## Longitudinal submodel 2: albumin
## Median MAD_SD
## (Intercept) 3.521 0.078
## year -0.160 0.024
## sigma 0.291 0.013
##
## Event submodel:
## Median MAD_SD exp(Median)
## (Intercept) 6.821 2.892 916.606
## sexf -0.145 0.637 0.865
## trt -0.492 0.488 0.611
## Long1|etavalue 0.788 0.283 2.198
## Long2|etavalue -3.105 0.905 0.045
## b-splines-coef1 -0.923 1.155 NA
## b-splines-coef2 0.606 0.912 NA
## b-splines-coef3 -2.622 1.307 NA
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## b-splines-coef4 -0.469 1.810 NA
## b-splines-coef5 -1.166 1.789 NA
## b-splines-coef6 -2.515 1.864 NA
##
## Group-level error terms:
## Groups Name Std.Dev. Corr
## id Long1|(Intercept) 1.2405
## Long1|year 0.1925 0.51
## Long2|(Intercept) 0.5013 -0.64 -0.52
## Long2|year 0.1015 -0.60 -0.82 0.47
## Num. levels: id 40
##
## Sample avg. posterior predictive distribution
## of longitudinal outcomes:
## Median MAD_SD
## Long1|mean_PPD 0.588 0.029
## Long2|mean_PPD 3.344 0.024
##
## ------
## For info on the priors used see help('prior_summary.stanreg').

or we can examine the summary output for the association parameters alone:

summary(mod2, pars = "assoc")

##
## Model Info:
##
## function: stan_jm
## formula (Long1): logBili ~ year + (year | id)
## family (Long1): gaussian [identity]
## formula (Long2): albumin ~ year + (year | id)
## family (Long2): gaussian [identity]
## formula (Event): survival::Surv(futimeYears, death) ~ sex + trt
## baseline hazard: bs
## assoc: etavalue (Long1), etavalue (Long2)
## algorithm: sampling
## priors: see help('prior_summary')
## sample: 2000 (posterior sample size)
## num obs: 304 (Long1), 304 (Long2)
## num subjects: 40
## num events: 29 (72.5%)
## groups: id (40)
## runtime: 1.3 mins
##
## Estimates:
## mean sd 2.5% 25% 50% 75% 97.5%
## Assoc|Long1|etavalue 0.797 0.296 0.242 0.599 0.788 0.984 1.404
## Assoc|Long2|etavalue -3.149 0.931 -5.176 -3.728 -3.105 -2.503 -1.511
##
## Diagnostics:
## mcse Rhat n_eff
## Assoc|Long1|etavalue 0.007 0.999 2000
## Assoc|Long2|etavalue 0.029 1.001 1000
##

size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

We can see that the estimated association parameters are similar to those obtained from the model
in the previous section. However, we can now also access a range of post-estimation functions
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(described in the stan_jm and related help documentation; see for example help(posterior_traj) or
help(posterior_survfit)). As an example, let’s plot the predicted trajectories for each biomarker and
the predicted survival function for three selected individuals in the dataset using stan_jm post-estimation
functions:

p1 <- posterior_traj(mod2, m = 1, ids = 6:8)
p2 <- posterior_traj(mod2, m = 2, ids = 6:8)
p3 <- posterior_survfit(mod2, ids = 6:8, draws = 200)
pp1 <- plot(p1, plot_observed = TRUE, vline = TRUE)
pp2 <- plot(p2, plot_observed = TRUE, vline = TRUE)
plot_stack_jm(yplot = list(pp1, pp2), survplot = plot(p3))
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Here we can see the strong relationship between the underlying values of the biomarkers and mortality.
Patient 8 who, relative to patients 6 and 7, has a higher underlying value for log serum bilirubin and
a lower underlying value for serum albumin at the end of their follow up has a far worse predicted
probability of survival.

5 Discussion

In this notebook we have introduced the formulation of a shared parameter joint model for longitudinal
and time-to-event data. The formulation of the joint model can allow for multiple longitudinal biomarkers
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along with a terminating event. The association between the longitudinal and event processes can be
parameterised in a variety of ways, but here we have focussed on the so-called current value association
structure which serves as the simplest and natural starting point.

The aim of this notebook was to introduce some of the ideas underpinning the estimation of these
joint models in Stan. One key feature of the Stan code that we have tried to describe in detail is the
implementation of the Gauss-Kronrod quadrature rule. The Gauss-Kronrod quadrature rule is required to
approximate the cumulative hazard in the likelihood of the event submodel. This aspect makes evaluating
the log likelihood for the event submodel more computationally intensive than if there were a closed-form
solution to the integral. In addition, the models are computationally intensive due to the relatively large
number of group-specific parameters that often need to be estimated. Nonetheless, estimating joint models
under a Bayesian framework can provide a number of benefits. The specification of complex association
structures can be made much easier. Furthermore, a Bayesian approach can lead more naturally to
dynamic predictions. For these, and other reasons, we believe it is of interest to try and optimise the
estimation of these models in Stan. The hope is that by describing the Stan code in some detail as part of
this notebook, those reading it will have the opportunity to provide guidance on how increases in speed,
efficiency, or numerical stability might be achieved.
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 Evaluating the performance of rstanarm 

This section describes a simulation study used to evaluate the performance of the joint 

modelling functionality in rstanarm. Subsection 5.3.1 describes the methods required to 

simulate event times under a complex data generating process, such as a joint longitudinal 

and time-to-event model. This includes background to the required methodology, followed 

by a description of the development of two new R packages: one for simulating simple or 

complex time-to-event data, and one specifically for simulating joint longitudinal and time-

to-event data. Subsection 5.3.2 describes the simulation study itself, including the data 

generating models, the inferential quantities used, and the results. 

5.3.1 Simulating time-to-event data 

5.3.1.1 Background 

To simulate time-to-event data, a common approach has been to make simplifying 

parametric assumptions about the distribution of event times. For example, many authors 

limit their simulation studies to settings in which the simulated event times are drawn from 

exponential or Weibull distributions. However, the exponential and Weibull distributions 

may be unrealistic in many settings. This is because the former assumes a constant hazard 

function, whilst the latter assumes a monotonically increasing or decreasing hazard 

function. These limiting forms for the hazard function are likely to be implausible in many 

health related applications where the underlying hazard function may have one or more 

turning points. 

A more general method, described throughout this section, is referred to herein as the 

cumulative hazard inversion method (Bender et al., 2005). This method allows one to 

simulate event times under a proportional hazards model data generating process with any 

parametric formulation for the baseline hazard. This includes as special cases the 

exponential, Weibull and Gompertz distributions. However, it also provides a much more 

general framework that can be extended beyond those standard parametric distributions to 

allow for more flexible baseline hazard functions. 

Using the cumulative hazard inversion method one can easily simulate an event time 𝑇𝑖
𝑠 

for individual 𝑖 by drawing a uniform random variable 𝑈𝑖 ~ 𝑈(0,1) and evaluating  
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 𝑇𝑖
𝑠 = 𝐻0

−1(− log(𝑈𝑖) exp(−𝒘𝑖
′𝜸)) (35) 

where 𝐻0
−1(. ) corresponds to the inverted cumulative baseline hazard, and 𝒘𝑖 is a vector 

of covariates with associated population-level (i.e. fixed effect) parameters 𝜸. The 

parameters 𝜸 are the so-called “true” log hazard ratios used to simulate the data.  

Therefore, all that is required to generate simulated event times under the cumulative 

hazard inversion method is an invertible cumulative baseline hazard function and access to 

independent draws of the random uniform variable 𝑈𝑖. The latter is easily obtainable, since 

standard statistical software packages have built in functions to simulate uniform random 

variables. However, access to the former will depend on how complex the definition of the 

baseline hazard is. If an analytical form for the inverted cumulative baseline hazard can be 

obtained, then the cumulative hazard inversion method is simple and computationally 

efficient. Moreover, even in situations where one cannot obtain an analytical form for the 

inverted cumulative baseline hazard, numerical approximations can be used. The following 

sections step through the intuition behind the cumulative hazard inversion method, as well 

as describing a number of related extensions. 

5.3.1.2 Simulating survival probabilities for known parametric distributions 

Recall that the survival function for individual 𝑖 is the probability that their “true” event 

time 𝑇𝑖
∗ is greater than the current time 𝑡. That is, the survival function can be defined as 

 𝑆𝑖(𝑡) = 𝑃(𝑇𝑖
∗ > 𝑡) (36) 

Moreover, the corresponding probability of having experienced the event at or before time 

𝑡 is the complement to the survival function. That is, the probability of failure is defined as 

 𝐹𝑖(𝑡) = 𝑃(𝑇𝑖
∗ ≤ 𝑡) = 1 − 𝑆𝑖(𝑡) (37) 

If the event time 𝑇𝑖
∗ is known to be drawn from some parametric distribution, then it also 

holds that the definition of the probability of failure in equation (37) is equivalent to the 

definition of the cumulative distribution function (CDF) for the distribution of event times.  

The probability integral transformation tells us that transforming a continuous random 

variable by its own CDF leads a new random variable that must follow a uniform 

distribution on the range 0 to 1 (Mood et al., 1974). That is, 𝐹𝑋(𝑋) ~ 𝑈(0,1) where 𝐹𝑋(. ) 

denotes the CDF for the continuous random variable 𝑋. Similarly, a new random variable 
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obtained by taking the complement of 𝑋 transformed by its own CDF must also follow a 

uniform distribution on the range 0 to 1, that is, 1 − 𝐹𝑋(𝑋) ~ 𝑈(0,1). This result therefore 

allows one to conclude that under a standard parametric distributional assumption for the 

event times 𝑇𝑖
∗ (𝑖 = 1, … ,𝑁), the survival probability for individual 𝑖 at their true event 

time will be a uniform random variable on the range 0 to 1. That is,  

 𝑆𝑖(𝑇𝑖
∗) = 𝑈𝑖 ~ 𝑈(0,1) (38) 

5.3.1.3 Extending to the proportional hazards data generating process 

It is then possible to extend these results to the setting of a proportional hazards model. 

Under a proportional hazards model the survival probability for individual 𝑖 at their event 

time 𝑇𝑖
∗ can be written as  

 𝑆𝑖(𝑇𝑖
∗) = exp(−𝐻0(𝑇𝑖

∗)exp (𝒘𝑖
′𝜸)) (39) 

where 𝐻0(𝑡) = ∫ ℎ0(𝑠)
𝑡

0
𝑑𝑠 is the cumulative baseline hazard evaluated at time 𝑡, and again 

𝒘𝑖 is a vector of covariates with associated population-level (i.e. fixed effect) parameters 

𝜸. This is because the proportional hazards assumption also implies proportional 

cumulative hazards. Of course, using equation (39), the survival probability 𝑆𝑖(𝑇𝑖
∗) can be 

replaced by the uniform random variable 𝑈𝑖. Moreover, since the objective is to simulate a 

new event time for individual 𝑖 (𝑖 = 1,… ,𝑁), rather than to evaluate the survival 

probability at the known true event time, one can replace 𝑇𝑖
∗ with the simulated event time 

for individual 𝑖, 𝑇𝑖
𝑠. This leads to  

 𝑈𝑖 = exp(−𝐻0(𝑇𝑖
s)exp (𝒘𝑖

′𝜸)) (40) 

To obtain the formula for the cumulative hazard inversion method, one simply needs to 

rearrange equation (40) to solve for the event time. That is, 

 𝑇𝑖
𝑠 = 𝐻0

−1(− log(𝑈𝑖) exp(−𝒘𝑖
′𝜸)) (41) 

which is the formula that was proposed by Bender et al. (2005).  

5.3.1.4 Extending to complex data generating processes 

If one can obtain an algebraic closed-form solution for the inverse cumulative baseline 

hazard, 𝐻0
−1(. ), then a major benefit of the cumulative hazard inversion method is that it is 
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simple and computationally efficient. Moreover, it can be used to generate event times for 

a variety of parametric baseline hazards, including standard choices such as the 

exponential, Weibull or Gompertz distributions. However, two potential hurdles can be 

encountered when applying the method to complex data generating processes. First, one 

may not be able to obtain a closed-form solution to the cumulative baseline hazard 𝐻0(𝑡). 

Second, the cumulative baseline hazard may not be invertible. 

Crowther and Lambert (2013) therefore proposed an extension to overcome these two 

difficulties. Their extension incorporates numerical root finding and/or numerical 

quadrature. The root finding is used to numerically solve for 𝑇𝑖
𝑠 in situations where the 

cumulative baseline hazard function cannot be inverted analytically. A convenient choice 

of algorithm is Brent’s univariate root finder (Brent, 1973), which can effectively find a 

solution to the equation  

 𝑆𝑖(𝑇𝑖
s) − 𝑈𝑖 = 0 (42) 

or equivalently 

 exp(−𝐻𝑖(𝑇𝑖
s)) − 𝑈𝑖 = 0 (43) 

by treating 𝑇𝑖
s as the single unknown. The quadrature is used to numerically evaluate the 

cumulative hazard function in settings where it does not have a tractable-form. A standard 

choice of algorithm is either Gauss-Legendre or Gauss-Kronrod quadrature, whereby the 

cumulative hazard 𝐻𝑖(𝑇𝑖
s) = ∫ ℎ𝑖(𝑠)𝑑𝑠

𝑇𝑖
s

𝑠=0
 can be approximated by 

 𝐻𝑖(𝑇𝑖
s) ≈  

𝑇𝑖
s

2
∑𝑣𝑞ℎ𝑖 (

𝑇𝑖
s(1 + 𝑧𝑞)

2
)

𝑄

𝑞=1

 (44) 

where 𝑣𝑞 and 𝑧𝑞 are, respectively, the standardised weights and locations (“abscissa”) for 

the 𝑞 = 1,… , 𝑄 quadrature nodes. In some situations, when the form of the baseline hazard 

function is complex, both the root finding and quadrature steps may be required, and so 

their approach involves iterating between the two until an appropriate solution to the root 

finding equation is obtained. 

Simulating event times under a joint longitudinal and time-to-event model is one example 

of a situation in which the method of Crowther and Lambert can be applied. In general, 

with a current value association structure, or any other time-dependent association 
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structure, there is difficulty in obtaining a closed-form solution to the cumulative hazard 

function of the event submodel. This is because the general form of the time-dependency 

in the hazard function (which depends on the longitudinal submodel specification) often 

leads to an intractable integral for the cumulative hazard. Moreover, even if a closed-form 

solution for the cumulative hazard can be obtained, one would need to do this for each 

formulation of the joint model, thereby decreasing the wider applicability of such an 

approach (Sweeting and Thompson, 2011). The standard cumulative hazard inversion 

method is therefore not suitable for simulating event times under a variety of joint model 

formulations. Rather, incorporating the extension proposed by Crowther and Lambert 

provides a far more general solution. The use of numerical quadrature to evaluate the 

cumulative hazard ensures that one only needs to specify the form of the hazard or log 

hazard function, which is typically known, since it is usually explicitly defined in the model 

specification. 

A unique set of circumstances warrant special mention. They correspond to the situation in 

which an individual is effectively cured (i.e. is no longer at risk of the event). This can 

occur, for example, if the simulated biomarker trajectory for an individual leads to a 

monotonically decreasing log hazard that effectively reaches negative infinity at some post-

baseline time 𝑡 > 0. When the log hazard reaches negative infinity, the hazard of the event 

is effectively zero, and the cumulative hazard and survival curve for that individual both 

become bounded (i.e. they reach an asymptote). If such a setting occurs, then – depending 

on the value drawn for the uniform random variable 𝑈𝑖 – equation (43) may not have a 

solution; that is, any univariate root finding algorithm will not be able to find a solution for 

𝑇𝑖
s on any positive finite interval. Although the event time in this setting is undefined, one 

may effectively consider the event time to be infinity for an individual who is cured. 

Therefore, a simple solution is to specify a maximum follow up time 𝑇𝑚𝑎𝑥 and, if an 

individual has a simulated event time that is known to be greater than the maximum follow 

up time (including the situation where the simulated event time is after the time at which 

cure occurs), then that individual is given a censoring time equal to 𝑇𝑚𝑎𝑥. This is the 

approach adopted in the simjm package described in Section 5.3.1.6. 

5.3.1.5 simsurv: An R package for simulating simple and complex time-to-event data 

The method described by Crowther and Lambert (2013) is implemented as part of the 

survsim (Crowther and Lambert, 2012) package in the Stata software. The package allows 
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users to simulate event times from standard distributions (exponential, Weibull, Gompertz), 

2-component mixture distributions, or any user-defined baseline hazard. The effects of 

covariates can be incorporated under a proportional hazards assumption or, alternatively, 

under non-proportional hazards by interacting covariates with a function of time. 

However, until recently, users of R software did not have access to an equivalent package 

that allowed simulation of event times under a time-to-event model with any user-defined 

hazard function. Therefore, as part of the work of this PhD, the simsurv (Brilleman, 2018b) 

package was written in R. The simsurv package is publically available on CRAN 

(https://cran.r-project.org/package=simsurv). The package has been modelled on the 

survsim package from Stata. Although the native syntax of the two packages differ slightly, 

the respective underlying methodologies and the packages’ functionality are intended to 

coincide.  

Although the simsurv package has functionality for simulating from standard parametric 

proportional hazards models, 2-component mixture distributions, or under non-

proportional hazards, these features will not be described here. Rather, in this section the 

only usage example provided will show how the simsurv package can be used to simulate 

event times under a shared parameter joint model. For further examples or technical details 

related to the package, the reader is referred to the vignettes provided in Appendix D.  

Example: Simulating event times under a joint model using simsurv 

This example shows how the simsurv package can be used to simulate event times under 

a shared parameter joint model. The simulated event times will be generated under the 

following random intercept and random slope model formulation for the longitudinal 

submodel 

 

𝑦𝑖(𝑡) = 𝜇𝑖(𝑡) + 𝜀𝑖(𝑡) 

𝜇𝑖(𝑡) = 𝛽0𝑖 + 𝛽1𝑖𝑡 + 𝛽2𝑥1𝑖 + 𝛽3𝑥2𝑖 

where  𝛽0𝑖 = 𝛽00 + 𝑏0𝑖,   𝛽1𝑖 = 𝛽10 + 𝑏1𝑖, 

(𝑏0𝑖, 𝑏1𝑖)
𝑇 ~ 𝑁(0, 𝚺) and 𝜀𝑖(𝑡) ∼ 𝑁(0, σy

2) 

(45) 

where the random error terms 𝜀𝑖(𝑡) are assumed to be independent of the individual-level 

random effects 𝑏0𝑖 and 𝑏1𝑖, and the event submodel 
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 ℎ𝑖(𝑡) = 𝛿𝑡𝛿−1 exp(𝛾0 + 𝛾1𝑥1𝑖 + 𝛾2𝑥2𝑖 + 𝛼𝜇𝑖(𝑡)) (46) 

where 𝑥1𝑖 is an indicator variable for a binary covariate, 𝑥2𝑖 is a continuous covariate, 𝑏0𝑖 

and 𝑏1𝑖 are individual-level parameters (i.e. random effects) for the intercept and slope for 

individual 𝑖, the 𝛽 and 𝛾 terms are population-level parameters (i.e. fixed effects), and 𝛿 is 

the shape parameter for the Weibull baseline hazard.  

This specification allows for an individual-specific linear trajectory for the longitudinal 

submodel, a Weibull baseline hazard in the event submodel, a current value association 

structure, and the effects of a binary and a continuous covariate in both the longitudinal and 

event submodels. Although the binary and continuous covariates used in this example are 

common across the longitudinal and event submodels, this restriction is not required in 

general. In this example, we will use the following distributions for generating the 

covariates: 𝑥1𝑖 ∼ Bernoulli(0.45) and 𝑥2𝑖 ∼ 𝑁(44, 8.5). The latter could, for example, 

mimic the age distribution in a study of adults. 

 

The R code required to return the hazard function for this joint model is: 

# First define the hazard function to pass to simsurv 

haz <- function(t, x, betas, ...) { 

  betas[["delta"]] * (t ^ (betas[["delta"]] - 1)) * exp( 

    betas[["gamma_0"]] + 

    betas[["gamma_1"]] * x[["x1"]] + 

    betas[["gamma_2"]] * x[["x2"]] + 

    betas[["alpha"]] * ( 

      betas[["beta_0i"]] + 

      betas[["beta_1i"]] * t + 

      betas[["beta_2"]]  * x[["x1"]] + 

      betas[["beta_3"]]  * x[["x2"]] 

    ) 

  ) 

} 
 

The next step is to define the “true” parameter values and the covariate data for each 

individual study subject. This is achieved by specifying two data frames: one for the 

parameter values, and one for the covariate data. Each row of the data frame will correspond 

to a different individual. The R code required to achieve this is: 
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# Then construct data frames with the true parameter 

# values and the covariate data for each individual 

set.seed(5454) # set seed before simulating data 

N <- 200       # number of individuals 

 

# Population-level (fixed effect) parameters 

betas <- data.frame( 

  delta   = rep(2,    N), 

  gamma_0 = rep(-11.9,N), 

  gamma_1 = rep(0.6,  N), 

  gamma_2 = rep(0.08, N), 

  alpha   = rep(0.03, N), 

  beta_0  = rep(90,   N), 

  beta_1  = rep(2.5,  N), 

  beta_2  = rep(-1.5, N), 

  beta_3  = rep(1,    N) 

) 

 

# Individual-level (random effect) parameters 

b_corrmat <- matrix(c(1, 0.5, 0.5, 1), 2, 2) 

b_sds     <- c(20, 3) 

b_means   <- rep(0, 2) 

b_z       <- MASS::mvrnorm(n = N, mu = b_means, Sigma = b_corrmat) 

b         <- sapply(1:length(b_sds),  

                    FUN = function(x) b_sds[x] * b_z[,x]) 

betas$beta_0i <- betas$beta_0 + b[,1] 

betas$beta_1i <- betas$beta_1 + b[,2] 

 

# Covariate data 

covdat <- data.frame( 

  x1 = stats::rbinom(N, 1, 0.45), # the binary covariate 

  x2 = stats::rnorm(N, 44, 8.5)   # the continuous covariate 

) 
 

The final step is to generate the simulated event times using a call to the ‘simsurv’ function. 

The only arguments that need to be specified are the user-defined hazard function, the true 

parameter values, and the covariate data. In this example, a maximum follow up time of 

ten units will also be used (for example, ten years), after which individuals will be censored 

if they have not yet experienced the event. The R code required to generate the simulated 

event times and then display the first few rows of the resulting data frame is as follows: 

# Set seed for simulations 

set.seed(546546) 
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# Then simulate the event times based on the user-defined 

# hazard function, covariates data, and true parameter values 

times <- simsurv(hazard = haz, x = covdat, betas = betas, maxt = 10) 

head(times) 

## id eventtime status 

##  1  4.813339      1 

##  2  9.763900      1 

##  3  5.913436      1 

##  4  2.823562      1 

##  5  2.315488      1 

##  6 10.000000      0 
 

5.3.1.6 simjm: An R package for simulating joint longitudinal and time-to-event 

data 

In the previous section, it was demonstrated how the simsurv R package can be used to 

simulate event times under a shared parameter joint model. The end-user of the package 

required relatively little knowledge about the underlying statistical methodology, since the 

package only required a user-defined hazard function to be provided and this was readily 

available as the event submodel specified in the data generating model. However, 

generating event times under a joint model using the simsurv package requires numerous 

lines of computing code. It also requires a new definition of the hazard function for each 

joint model association structure one may wish to use.  

To perform the simulation study in the following section of this thesis, it is necessary to 

simulate event times under several joint model specifications, for example, varying 

numbers of longitudinal outcomes and different types of association structures. To facilitate 

this process, the simjm (Brilleman, 2018a) R package was developed as part of this PhD. 

The simjm package acts as a wrapper to the simsurv package, and provides a user-friendly 

interface specifically for simulating joint longitudinal and time-to-event data. In addition 

to simulating event times under the joint model formulation, it also returns the simulated 

longitudinal data. The longitudinal data, for example, repeated biomarker measurements, 

are generated as random draws from the appropriate conditional distribution specified in 

the data generating model, thereby incorporating measurement error, and evaluated at either 

scheduled visit times or random visit times depending on the choice made by the user. The 
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use of the simjm package is demonstrated next, by simulating data under the same joint 

model as used in the simsurv example in the previous section. 

Example: Simulating joint longitudinal and time-to-event data using simjm 

The code below shows how to simulate longitudinal and time-to-event data for 200 

individuals under the joint model that was specified in equations (45) and (46): 

# Use simjm to generate joint longitudinal and event data 

simdat <- simjm( 

  M = 1, n = 200,  

  max_fuptime          = 10, 

  betaEvent_aux        = 2, 

  betaEvent_intercept  = -11.9, 

  betaEvent_binary     = 0.6, 

  betaEvent_continuous = 0.08, 

  betaEvent_assoc      = 0.03, 

  betaLong_intercept   = 90, 

  betaLong_slope       = 2.5, 

  betaLong_binary      = -1.5, 

  betaLong_continuous  = 1, 

  b_sd    = c(20, 3), 

  b_rho   = 0.5, 

  family  = gaussian(), 

  prob_Z1 = 0.45,  

  mean_Z2 = 44,  

  sd_Z2   = 8.5) 
 

Arguments are provided in the call to the ‘simjm’ function for specifying the number of 

longitudinal biomarkers, the number of individuals, the maximum follow up time, the type 

of distribution for each longitudinal biomarker (i.e. family), the distributions of the 

covariates, and the “true” values for each of the parameters. Other arguments that are not 

shown in the code above (since they were set equal to their defaults) include the type of 

longitudinal trajectory (linear or quadratic), the choice of association structure, and more. 

The user is not required to explicitly specify the hazard or log hazard function (as they 

would have to if using simsurv directly), since this is determined based on the user inputs 

to the arguments of the ‘simjm’ function.  

The simulated data are returned in a separate data frame for each submodel, that is, one for 

each longitudinal submodel (i.e. each biomarker, measured with error) and one for the event 
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submodel (i.e. event times and event indicator). We can examine the first few rows of each 

of these data frames using the following code: 

# Examine the first few rows of the longitudinal data 

head(simdat$Long1) 

##  id Z1      Z2 eventtime status        tij    Yij_1 

##   1  0 34.2582  7.408827      1 0.00000000 140.4578 

##   1  0 34.2582  7.408827      1 2.99705843 158.9575 

##   1  0 34.2582  7.408827      1 4.39900056 166.8687 

##   1  0 34.2582  7.408827      1 4.49202040 166.3300 

##   1  0 34.2582  7.408827      1 6.44825677 176.7721 

##   1  0 34.2582  7.408827      1 6.75222545 179.8334 

 

# Examine the first few rows of the event data 

head(simdat$Event) 

##  id Z1       Z2 eventtime status 

##   1  0 34.25820  7.408827      1 

##   3  0 54.39843  5.548837      1 

##   4  0 45.73779  1.256674      1 

##   5  1 47.81405  1.578142      1 

##   6  0 68.17889  1.104480      1 
 

The first data frame shows the multiple-row per-individual biomarker data, with the first 

individual having at least six biomarker measurements, taken at at baseline and random 

post-baseline measurement times. The second data frame shows the single-row per-

individual event data with the first six individuals all experiencing the event during follow 

up. The simjm package will be used to generate data for the simulation study described in 

the following section.  

5.3.2 Simulation study 

This section describes a simulation study evaluating the performance of the joint modelling 

functionality in the rstanarm R package. The objective of the simulation study was to 

assess whether rstanarm was able to recover the true value for each of the parameters used 

in the data generating models. The data generating models, the inferential quantities, and 

the results of the simulation study are described in the following sections. 

5.3.2.1 Data generating models 

Two sets of simulations were performed in this simulation study. The first set of simulations 

was based on a univariate joint model (i.e. one longitudinal outcome) for the data 
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generating process, and considered several different types of association structure. The 

second set of simulations was based on a multivariate joint model (i.e. more than one 

longitudinal outcome) and considered a current value association structure. The simulation 

study using the multivariate joint model took significantly longer computing time to 

complete and therefore an extensive simulation study incorporating a wide range of 

association structures was not feasible. 

The data in the first set of simulations were generated under the following univariate joint 

model. The longitudinal submodel took the form 

 

𝑦𝑖(𝑡) = 𝜇𝑖(𝑡) + 𝜀𝑖(𝑡) 

𝜇𝑖(𝑡) = 𝛽0𝑖 + 𝛽1𝑖𝑡 + 𝛽2𝑥1𝑖 + 𝛽3𝑥2𝑖 

where  𝛽0𝑖 = 𝛽00 + 𝑏0𝑖,   𝛽1𝑖 = 𝛽10 + 𝑏1𝑖, 

(𝑏0𝑖, 𝑏1𝑖)
𝑇 ~ 𝑁(0, 𝚺) and 𝜀𝑖(𝑡) ∼ 𝑁(0, σy

2) 

(47) 

where the random error terms 𝜀𝑖(𝑡) are assumed to be independent of the individual-level 

random effects 𝑏0𝑖 and 𝑏1𝑖. For the event submodel, three types of association structures 

were considered. These were as follows 

 Model 1:    ℎ𝑖(𝑡) = 𝛿𝑡𝛿−1 exp(𝛾0 + 𝛾1𝑥1𝑖 + 𝛾2𝑥2𝑖 + 𝛼1𝜇𝑖(𝑡)) (48) 

 Model 2:    ℎ𝑖(𝑡) = 𝛿𝑡𝛿−1 exp(𝛾0 + 𝛾1𝑥1𝑖 + 𝛾2𝑥2𝑖 + 𝛼2
𝑑𝜇𝑖(𝑡)

𝑑𝑡
) (49) 

 Model 3:    ℎ𝑖(𝑡) = 𝛿𝑡𝛿−1 exp(𝛾0 + 𝛾1𝑥1𝑖 + 𝛾2𝑥2𝑖 + 𝛼3 ∫ 𝜇𝑖(𝑢)
𝑡

0
𝑑𝑢) (50) 

These models each have the same baseline hazard (Weibull) and time-fixed covariates (one 

binary and one continuous), but differ in the assumed association structure (current value, 

current slope, and cumulative effects respectively).  

The covariate values for each individual were simulated according to the following 

distributions, 𝑥1𝑖 ∼ 𝐵𝑒𝑟𝑛(0.5) and 𝑥2𝑖 ∼ 𝑁(0,1). The true parameter values that were used 

for the data generating models are shown in Table 3. For the variance-covariance matrix of 

the individual-specific parameters, 𝚺, consider the decomposition 𝚺 = 𝐕 𝐑 𝐕 where 𝐑 is 

the correlation matrix for the individual-specific parameters and 𝐕 = diag(𝛔𝐛) is a square 

diagonal matrix with the diagonal elements being the values from a vector of standard 
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deviations for the individual-specific parameters, 𝛔𝐛. For the univariate joint models, the 

true standard deviations were taken to be 𝛔𝐛 = (2, 1) and the true correlation matrix was 

𝐑 = [
1 −0.2

−0.2 1
]. 

The data in the second set of simulations were generated under the following multivariate 

joint model. The longitudinal submodel for the 𝑚𝑡ℎ (𝑚 = 1,2,3) longitudinal outcome 

takes the form 

 

𝑦𝑖
(𝑚)(𝑡) = 𝜇𝑖

(𝑚)(𝑡) + 𝜀𝑖
(𝑚)(𝑡) 

𝜇𝑖
(𝑚)(𝑡) = 𝛽0𝑖

(𝑚) + 𝛽1𝑖
(𝑚)(𝑡) + 𝛽2

(𝑚)𝑥1𝑖 + 𝛽3
(𝑚)𝑥2𝑖 

where  𝛽0𝑖
(𝑚) = 𝛽00

(𝑚) + 𝑏0𝑖
(𝑚)

,   𝛽1𝑖
(𝑚) = 𝛽10

(𝑚) + 𝑏1𝑖
(𝑚)

, 

(𝑏0𝑖
(1), 𝑏1𝑖

(1), 𝑏0𝑖
(2), 𝑏1𝑖

(2), 𝑏0𝑖
(3), 𝑏1𝑖

(3))
𝑇

~ 𝑁(0, 𝚺)  and  𝜀𝑖
(𝑚)(𝑡) ∼ 𝑁(0, σy

(𝑚)) 

(51) 

where each of the three random error terms are assumed to be independent of the six 

individual-level random effect terms. For the event submodel, a current value association 

structure is used for linking each expected biomarker value to the log hazard of the event. 

Therefore, the event submodel takes the form 

 ℎ𝑖(𝑡) = 𝛿𝑡
𝛿−1 exp(𝛾0 + 𝛾1𝑥1𝑖 + 𝛾2𝑥2𝑖 + ∑ 𝛼𝑚𝜇𝑖

(𝑚)(𝑡)

3

𝑚=1

) (52) 

Again, the covariate values were simulated according to 𝑥1𝑖 ∼ 𝐵𝑒𝑟𝑛(0.5) and 𝑥2𝑖 ∼

𝑁(0,1) distributions. The “true” parameter values that were used for the data generating 

model are shown in Table 4. For the multivariate joint model, the true standard deviations 

used for the individual-specific parameters were 𝛔𝐛 = (2, 1, 2, 1, 2, 1) and the correlation 

matrix used was  

 𝐑 =

[
 
 
 
 
 
1 0.2 0.5 0 −0.3 0
0.2 1 0 0.2 0 0
0.5 0 1 0.3 0.1 0
0 0.2 0.3 1 0 0

−0.3 0 0.1 0 1 0.2
0 0 0 0 0.2 1 ]

 
 
 
 
 

 (53) 
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5.3.2.2 Inferential quantities 

For each data generating model (i.e. three univariate joint models, and one multivariate 

joint model) there were 𝐷 = 200 simulated datasets generated, with each dataset containing 

𝑁 = 200 individuals. An analysis model (intended to coincide with the data generating 

model) was fit to each simulated dataset using a single chain of 2000 MCMC iterations, 

which included a warm-up phase of 1000 iterations that were not used for inference. 

Convergence for each simulated dataset was addressed by ensuring that each parameter had 

an estimated R-hat statistic less than 1.1 (Stan Development Team, 2017b). 

The ability to recover the true parameter values was assessed using the following approach. 

For the model that was fit to the 𝑑𝑡ℎ (𝑑 = 1,… , 𝐷) simulated dataset the following 

estimates were calculated: 

 The mean of the posterior distribution for parameter 𝑘, denoted 𝜃𝑘
(𝑑)

 

 The bias for parameter 𝑘, defined as �̂�𝑘
(𝑑) = 𝜃𝑘

(𝑑) − 𝜃𝑘 where 𝜃𝑘 denotes the true value 

of parameter 𝑘 that was used to simulate the data 
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Table 3. True parameter values used for simulation study (univariate joint models) 

Parameter Value Description of parameter 

𝛽00  0 Population-level intercept in longitudinal submodel 

𝛽10  1 Population-level linear slope in longitudinal submodel 

𝛽2  1 Population-level coefficient for binary covariate in longitudinal submodel 

𝛽3  1 Population-level coefficient for continuous covariate in longitudinal submodel 

𝛾0  -4 Population-level intercept in event submodel 

𝛾1  1 Population-level coefficient for binary covariate in event submodel 

𝛾2  0 Population-level coefficient for continuous covariate in event submodel 

𝛼1  0.2 Association parameter (current value association structure, under Model 1) 

𝛼2  0.2 Association parameter (current slope association structure, under Model 2) 

𝛼3  0.2 Association parameter (cumulative effects association structure, under Model 3) 

𝛿  1.2 Shape parameter for Weibull baseline hazard 
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Table 4. True parameter values used for simulation study (multivariate joint model) 

Parameter Value Description of parameter 

𝛽00
(1)

, 𝛽00
(2)

, 𝛽00
(3)

  1, -1, 0 Population-level intercept in longitudinal submodels 

𝛽10
(1)

, 𝛽10
(2)

, 𝛽10
(3)

  1, 2, -1 Population-level linear slope in longitudinal submodels 

𝛽2
(1)

, 𝛽2
(2)

, 𝛽2
(3)

  1, 1, 1 Population-level coefficient for binary covariate in longitudinal submodels 

𝛽3
(1)

, 𝛽3
(2)

, 𝛽3
(3)

  1, 1, 1 Population-level coefficient for continuous covariate in longitudinal submodels 

𝛾0  -4 Population-level intercept in event submodel 

𝛾1  1 Population-level coefficient for binary covariate in event submodel 

𝛾2  0 Population-level coefficient for continuous covariate in event submodel 

𝛼1  0.1 Association parameter (current value association structure for biomarker 1) 

𝛼2  0.2 Association parameter (current value association structure for biomarker 2) 

𝛼3  -0.1 Association parameter (current value association structure for biomarker 3) 

𝛿  1.2 Shape parameter for Weibull baseline hazard 
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 The relative bias for parameter 𝑘, defined as �̂�𝑘
(𝑑)

= 𝜃𝑘
−1(𝜃𝑘

(𝑑)
− 𝜃𝑘) where 𝜃𝑘 denotes 

the true value of parameter 𝑘 that was used to simulate the data 

 The standard deviation of the posterior distribution (i.e. estimated standard error) for 

parameter 𝑘, denoted �̂�𝑘
(𝑑)

 

For inference in the simulation study, the following quantities and plots were then 

calculated using the estimates obtained across the 𝐷 datasets:  

 The mean bias for parameter 𝑘, defined as �̅�𝑘 =
1

𝐷
∑ �̂�𝑘

(𝑑)𝐷
d=1  (“mean bias”) 

 The mean relative bias for parameter 𝑘, defined as �̅�𝑘 =
1

𝐷
∑ �̂�𝑘

(𝑑)𝐷
d=1  (“mean relative 

bias”) 

 The mean standard deviation of the posterior distribution for parameter 𝑘, defined as 

𝑆�̅� =
1

𝐷
∑ �̂�𝑘

(𝑑)𝐷
d=1  (“mean estimated standard error”) 

 The standard error of the posterior mean for parameter 𝑘, defined as the standard 

deviation of the estimates {𝜃𝑘
(𝑑)
; 𝑑 = 1,… , 𝐷} (“empirical standard error”). 

 Density plots of the posterior mean estimates {𝜃𝑘
(𝑑)
; 𝑑 = 1,… , 𝐷} for parameter 𝑘; 

these were overlaid with a dashed line showing the true parameter value 𝜃𝑘 that was 

used to simulate the data (“empirical sampling distribution of the posterior mean”). 

5.3.2.3 Results 

Figure 2 through 5 show, for each of the data generating models (i.e. three univariate joint 

models and one multivariate joint model), density plots of the posterior mean estimates for 

each parameter (i.e. the empirical distribution of 𝜃𝑘). The dashed lines in the plots show 

the location of the true parameter value used to simulate the data (i.e. the location of 𝜃𝑘). 

Tables 5 through 8 show, for each of the data generating models, the estimated mean bias, 

mean relative bias, mean estimated standard error, and empirical standard error for each of 

the parameters. 

Overall, the results from the simulation study suggest that rstanarm was able to recover 

the true parameter values used in the data generating models. The true values for the 

parameters (the dashed lines in Figures 2 through 5) are located close to the centre of the 

sampling distribution for the posterior mean. Moreover, the tables demonstrate that 
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Figure 2. Simulation study results for univariate joint model 1; kernel density plots showing the distribution (across the 200 simulated datasets) 

of the estimated posterior mean for each parameter. The dashed line shows the true parameter value used in the data generating model. 
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Figure 3. Simulation study results for univariate joint model 2; kernel density plots showing the distribution (across the 200 simulated datasets) 

of the estimated posterior mean for each parameter. The dashed line shows the true parameter value used in the data generating model. 
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Figure 4. Simulation study results for univariate joint model 3; kernel density plots showing the distribution (across the 200 simulated datasets) 

of the estimated posterior mean for each parameter. The dashed line shows the true parameter value used in the data generating model. 
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Figure 5. Simulation study results for the multivariate joint model; kernel density plots showing the distribution (across the 200 simulated 

datasets) of the estimated posterior mean for each parameter. The dashed line shows the true parameter value used in the data generating model. 
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Figure 5 (cont’d). Simulation study results for the multivariate joint model; kernel density plots showing the distribution (across the 200 

simulated datasets) of the estimated posterior mean for each parameter. The dashed line shows the true parameter value used in the data 

generating model. 
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Table 5. Simulation study results for univariate joint model 1. Estimated mean bias, mean 

relative bias, mean estimated standard error, and empirical standard error for each of the 

parameters. 

Parameter True �̅�𝑘  �̅�𝑘  𝑆�̅�  𝑠𝑑(𝜃𝑘)  

𝛽00  0 0.011 n/a 0.208 0.209 

𝛽10  1 -0.008 -0.812 0.289 0.295 

𝛽2  1 -0.006 -0.616 0.146 0.147 

𝛽3  1 -0.001 -0.119 0.078 0.075 

𝜎𝑦  1 0.000 0.002 0.020 0.020 

𝛾0  -4 -0.109 2.715 0.346 0.365 

𝛾1  1 0.022 2.208 0.251 0.248 

𝛾2  0 0.007 n/a 0.120 0.121 

𝛼1  0.2 0.005 2.310 0.036 0.037 

𝚺[1,1]  4 0.075 1.877 0.456 0.423 

𝚺[1,2]  0.4 -0.003 0.692 0.172 0.172 

𝚺[2,2]  1 0.039 3.940 0.122 0.122 

Abbreviations. �̅�𝑘: mean bias for parameter 𝑘; �̅�𝑘: mean relative bias (%) for parameter 𝑘; 𝑆�̅�: mean estimated 

standard error for parameter 𝑘; 𝑠𝑑(�̂�𝑘): empirical standard error of the posterior mean for parameter 𝑘; n/a: 

not applicable. 
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Table 6. Simulation study results for univariate joint model 2. Estimated mean bias, mean 

relative bias, mean estimated standard error, and empirical standard error for each of the 

parameters. 

Parameter True �̅�𝑘  �̅�𝑘  𝑆�̅�  𝑠𝑑(𝜃𝑘)  

𝛽00  0 -0.011 n/a 0.207 0.223 

𝛽10  1 0.004 0.403 0.078 0.076 

𝛽2  1 -0.005 -0.524 0.289 0.313 

𝛽3  1 0.027 2.729 0.145 0.138 

𝜎𝑦  1 0.001 0.071 0.019 0.020 

𝛾0  -4 -0.191 4.763 0.454 0.487 

𝛾1  1 0.046 4.638 0.326 0.336 

𝛾2  0 -0.009 n/a 0.146 0.145 

𝛼2  0.2 -0.006 -2.862 0.187 0.179 

𝚺[1,1]  4 0.080 2.012 0.454 0.434 

𝚺[1,2]  0.4 -0.003 0.765 0.166 0.163 

𝚺[2,2]  1 0.021 2.128 0.116 0.116 

Abbreviations. �̅�𝑘: mean bias for parameter 𝑘; �̅�𝑘: mean relative bias (%) for parameter 𝑘; 𝑆�̅�: mean estimated 

standard error for parameter 𝑘; 𝑠𝑑(�̂�𝑘): empirical standard error of the posterior mean for parameter 𝑘; n/a: 

not applicable. 
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Table 7. Simulation study results for univariate joint model 3. Estimated mean bias, mean 

relative bias, mean estimated standard error, and empirical standard error for each of the 

parameters. 

Parameter True �̅�𝑘  �̅�𝑘  𝑆�̅�  𝑠𝑑(𝜃𝑘)  

𝛽00  0 -0.047 n/a 0.210 0.208 

𝛽10  1 -0.016 -1.600 0.078 0.082 

𝛽2  1 0.019 1.857 0.293 0.308 

𝛽3  1 -0.013 -1.279 0.147 0.153 

𝜎𝑦  1 0.001 0.118 0.021 0.021 

𝛾0  -4 -0.027 0.680 0.339 0.360 

𝛾1  1 -0.062 -6.169 0.203 0.211 

𝛾2  0 -0.024 n/a 0.103 0.105 

𝛼3  0.2 0.008 3.790 0.020 0.020 

𝚺[1,1]  4 0.127 3.163 0.466 0.438 

𝚺[1,2]  0.4 0.003 -0.798 0.176 0.184 

𝚺[2,2]  1 0.024 2.406 0.122 0.116 

Abbreviations. �̅�𝑘: mean bias for parameter 𝑘; �̅�𝑘: mean relative bias (%) for parameter 𝑘; 𝑆�̅�: mean estimated 

standard error for parameter 𝑘; 𝑠𝑑(�̂�𝑘): empirical standard error of the posterior mean for parameter 𝑘; n/a: 

not applicable. 
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Table 8. Simulation study results for the multivariate joint model. Estimated mean bias, 

mean relative bias, mean estimated standard error, and empirical standard error for each of 

the parameters. 

Parameter True �̅�𝑘  �̅�𝑘  𝑆�̅�  𝑠𝑑(𝜃𝑘)  

𝛽00
(1)

  1 -0.008 -0.813 0.211 0.209 

𝛽00
(2)

  -1 -0.016 1.623 0.211 0.214 

𝛽00
(3)

  0 -0.002 n/a 0.212 0.186 

𝛽10
(1)

  1 -0.013 -1.276 0.082 0.075 

𝛽10
(2)

  2 0.002 0.095 0.082 0.080 

𝛽10
(3)

  -1 0.011 -1.060 0.082 0.079 

𝛽2
(1)

  1 0.015 1.486 0.299 0.292 

𝛽2
(2)

  1 0.015 1.503 0.296 0.280 

𝛽2
(3)

  1 0.013 1.251 0.300 0.293 

𝛽3
(1)

  1 0.012 1.193 0.150 0.157 

𝛽3
(2)

  1 0.024 2.419 0.149 0.155 

𝛽3
(3)

  1 0.013 1.269 0.150 0.151 

𝜎𝑦
(1)

  1 0.003 0.275 0.022 0.022 

𝜎y
(2)

  1 0.002 0.226 0.022 0.022 

𝜎y
(3)

  1 0.002 0.230 0.021 0.022 

𝛾0  -4 -0.085 2.135 0.307 0.297 

𝛾1  1 0.023 2.290 0.190 0.184 

𝛾2  0 -0.006 n/a 0.096 0.099 

𝛼1  0.1 0.002 1.516 0.025 0.024 

𝛼2  0.2 0.005 2.510 0.026 0.026 
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𝛼3  -0.1 0.000 -0.261 0.024 0.023 

𝚺[1,1]  4 0.124 3.100 0.468 0.481 

𝚺[1,2]  0.4 0.008 1.974 0.175 0.164 

𝚺[1,3]  2 0.015 0.752 0.356 0.324 

𝚺[1,4]  0 0.009 n/a 0.174 0.170 

𝚺[1,5]  -1.2 0.000 0.020 0.336 0.319 

𝚺[1,6]  0 0.004 n/a 0.177 0.174 

𝚺[2,2]  1 0.044 4.372 0.130 0.132 

𝚺[2,3]  0 -0.002 n/a 0.176 0.165 

𝚺[2,4]  0.2 0.000 -0.139 0.092 0.080 

𝚺[2,5]  0 -0.019 n/a 0.176 0.159 

𝚺[2,6]  0 -0.004 n/a 0.091 0.085 

𝚺[3,3]  4 0.143 3.580 0.468 0.472 

𝚺[3,4]  0.6 -0.007 -1.204 0.177 0.177 

𝚺[3,5]  0.4 0.036 9.003 0.326 0.307 

𝚺[3,6]  0 -0.007 n/a 0.177 0.176 

𝚺[4,4]  1 0.029 2.936 0.130 0.120 

𝚺[4,5]  0 -0.042 n/a 0.173 0.161 

𝚺[4,6]  0 -0.001 n/a 0.091 0.082 

𝚺[5,5]  4 0.136 3.408 0.470 0.415 

𝚺[6,6]  0.4 -0.002 -0.418 0.176 0.168 

𝚺[6,6]  1 0.047 4.652 0.131 0.137 

Abbreviations. �̅�𝑘: mean bias for parameter 𝑘; �̅�𝑘: mean relative bias (%) for parameter 𝑘; 𝑆�̅�: mean estimated 

standard error for parameter 𝑘; 𝑠𝑑(�̂�𝑘): empirical standard error of the posterior mean for parameter 𝑘; n/a: 

not applicable. 
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the mean estimated standard error (i.e. the mean standard deviation for the posterior 

distribution) was close to the empirical standard error for all parameters. 

 Comparison of software for multivariate joint models 

This section provides a qualitative comparison of the software packages currently available 

for fitting multivariate joint models for longitudinal and time-to-event data. Multivariate is 

defined here as meaning joint models that can accommodate more than one longitudinal 

outcome.  

In 2016, Hickey et al. reviewed the methods for joint modelling of multivariate longitudinal 

and time-to-event data, and summarised the software that was available for fitting such 

models at that time. They highlighted that the software available for fitting multivariate 

joint models was extremely limited. However, since 2016 there have been a number of 

developments in this area. In particular, during 2017 several new or updated software 

packages were released that provide functionality for estimating multivariate shared 

parameter joint models. Here, we focus on the general purpose software packages that are 

now available. Specifically, we include the following five packages in our comparison: 

rstanarm, JMbayes, joineRML, survtd, and megenreg. A brief overview of each 

package is provided below. 

5.4.1 The rstanarm R package 

The rstanarm (Brilleman et al., 2018; Stan Development Team, 2017a) R package 

estimates shared parameter joint models under a Bayesian approach via the software Stan. 

The joint modelling functionality in rstanarm has been developed as part of the work for 

this PhD. An introduction to this package was provided in the paper presented in Section 

5.2. Nonetheless, the key details related to the package will be described again in brief here. 

The joint model can be univariate (i.e. one longitudinal outcome) or multivariate (i.e. more 

than one longitudinal outcome). The longitudinal outcomes can be continuous, binary, or 

counts and each longitudinal outcome can be of a different type. Clustering factors beyond 

that of the individual (e.g. patients clustered within clinics, or multiple tumour lesions 

clustered within patients) are allowed. The event submodel is assumed to be a parametric 

proportional hazards model, and several options are allowed for the baseline hazard 

including a Weibull distribution, a piecewise constant baseline hazard, or more flexible 

shapes by using B-splines for modelling the log baseline hazard. 
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The user specifies the joint model using customary R formula syntax and data frames. The 

main modelling function (‘stan_jm’) returns a model object for which there are a large 

number of post-estimation functions available, for example, diagnostic plots or dynamic 

predictions. The back-end estimation of the model is carried out using the Bayesian 

software Stan, a C++ library for full Bayesian inference based on an implementation of 

Hamiltonian Monte Carlo (although approximate Bayesian inference and optimisation 

algorithms are also available). 

5.4.2 The JMbayes R package 

The JMbayes (Rizopoulos, 2016, 2017) R package estimates shared parameter joint 

models under a Bayesian framework using a Metropolis algorithm. The JMbayes package 

has been publically available on CRAN since 2012, however, in 2017 it was extended to 

handle multivariate joint models. The package currently allows for either continuous, 

binary or count biomarker data through a linear, logistic, or Poisson mixed effects 

regression submodel for the longitudinal outcome. The event submodel is specified as a 

parametric proportional hazards model with the baseline hazard estimated using penalised 

cubic splines. There is significant flexibility in the specification of the association structure 

for the joint model, since a user-specified definition of the association structure is possible. 

A range of post-estimation functions are available for the fitted joint model, including 

dynamic predictions. 

5.4.3 The joineRML R package 

The joineRML (Hickey et al., 2017) R package estimates multivariate shared parameter 

joint models under an extension of the joint model proposed by Henderson et al. (2000). 

The longitudinal outcomes are assumed to be normally distributed continuous biomarkers, 

specified using a (multivariate) linear mixed effects regression submodel. The event 

submodel is specified as a semi-parametric proportional hazards model with the baseline 

hazard left unspecified. Estimation of the model is performed under an EM algorithm. 

Approximate standard errors are provided by default, although the user can also elect to 

obtain standard errors by bootstrapping (however, the latter can be relatively more time 

consuming). The association structure for the joint model is based on a current value 

association structure. A range of post-estimation functions are available for the fitted joint 

model, including dynamic predictions. 
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5.4.4 The survtd R package 

The survtd (Moreno-Betancur, 2017) R package fits multivariate joint models using a two-

stage multiple imputation for joint modelling (MIJM) approach. The methods are described 

in Moreno-Betancur et al. (2017) and were briefly discussed in Section 2.5.3 of this thesis. 

Although the paper is not part of this thesis, it was included in the “Research outcomes 

during enrolment” section at the start of this thesis, owing to my contribution to the work 

and software, and co-authorship of the resulting publication. In brief, the approach uses the 

following two stages:  

(i) the so-called “true” underlying values of each longitudinal biomarker are estimated 

via multiple imputation by chained equations (MICE), with a novel adjustment in 

the imputation model such that it corrects for informative dropout in the 

longitudinal process due to occurrence of the event, and  

(ii) the multiple imputations are included in a semi-parametric Cox or additive hazards 

model, and parameter estimates are obtained via Rubin’s rules (Rubin, 1987).  

Although the approach is not based on the full likelihood for the joint model, it has been 

shown to perform well in a range of simulations. The software is currently limited to 

longitudinal outcomes that are assumed to be continuous and normally distributed. The 

association structure for the joint model is based on a current value association structure. 

Because of the two-stage process, the software provides flexibility in the formulation of the 

event submodel. Specifically, the user can choose between either a proportional hazards 

submodel or additive hazards submodel. The latter may be desirable in settings where one 

wishes to estimate absolute rate differences rather than relative rate differences (i.e. hazard 

differences not hazard ratios). The baseline hazard is left unspecified in both the 

proportional and additive hazard formulations. 

5.4.5 The megenreg Stata package 

The megenreg (Crowther, 2017a, 2017c) Stata package provides an estimation framework 

for fitting extended multivariate generalised linear and non-linear mixed effects models. 

Joint models for longitudinal and time-to-event data are included within the scope of the 

package. However, rather than being designed for estimating a specific class of models, the 

package provides a general framework for estimating models with any number of correlated 

outcomes and/or multiple levels of clustering. With regard to shared parameter joint models 
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for longitudinal and time-to-event data, both univariate and multivariate models can be 

estimated. Moreover, several association structures are accommodated through a series of 

built-in functions that generate current value, current slope, or cumulative effects of the 

biomarker. Additional association structures can also be accommodated through the ability 

to specify a user-defined likelihood function. The package is currently only available as a 

development version. Moreover, post-estimation functionality is currently limited, with 

predictions from the fitted model not yet available. For these latter reasons, the megenreg 

package is excluded from the comparison table shown in the following section. 

5.4.6 Summary of features 

Table 9 provides a qualitative summary of the features of each of the aforementioned 

packages for fitting multivariate joint models. 
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Table 9. Summary of the features available in each of the multivariate joint modelling 

packages. 

 rstanarm JMbayes joineRML survtd 

Estimation algorithm      

   MCMC     

   MC Expectation Maximization     

   MICE, Partial likelihood      

     

Longitudinal submodel(s)     

   Distributional families     

      Gaussian     

      Bernoulli     

      Poisson     

      Negative-binomial     

      Gamma     

      Inverse-Gaussian     

   Clustering beyond patient-level     

     

Event submodel     

   Hazard effect types     

      Proportional hazards     

      Additive hazards     

      Non-proportional hazards1     

   Baseline hazard types      

      Unspecified     

      Penalised splines      

      B-splines     

      Weibull     

      Piecewise constant     

     

Association structures      

   Current value2 
    

   Current slope     

   AUC     

   Weighted AUC     

   Shared random effects     

   Lagged associations     

   Interaction terms with observed 

covariate data 

    

   Interactions between longitudinal 

outcomes 

    

     

Post-estimation functions     

   Dynamic predictions     
Abbreviations: MCMC: Markov chain Monte-Carlo. MC: Monte-Carlo. MICE: multiple imputation by 

chained equations. AUC: area under the curve. 

1 In other words, time-dependent hazard ratios. 

2 For joineRML this is using the approach of Henderson et al. (2000). 
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Chapter 6:  Joint models for multilevel hierarchical data 

 Chapter introduction 

Clustered data arise in many settings in applied health research. Longitudinal measures are 

one such example whereby observation times are clustered within the observational units, 

often individual study participants. Longitudinal data therefore represent a two-level 

hierarchical structure; observation times are at level 1 of the hierarchy and individuals are 

at level 2. Moreover, we generally refer to the individual as being the single clustering 

factor. 

However, there are also many situations in which there are two or more clustering factors. 

In oncology, for example, it is possible to track changes in tumour size over time following 

the initiation of treatment. Since patients can have multiple tumour lesions, the resulting 

longitudinal data structure may contain repeated measurements taken at observation times 

(level 1) clustered within lesions (level 2) within patients (level 3). Such data would have 

a three-level hierarchical structure with two clustering factors, the lesion and the patient. In 

this example, the patient (or individual) represents the highest level of the hierarchy. 

An alternative situation is one in which the additional clustering factor (that is, the 

clustering factor that is not the individual) occurs higher in the data hierarchy than the 

individual. One example is longitudinal measurements taken at observation times (level 1) 

on individuals (level 2) clustered within clinics (level 3). A second example is an individual 

patient data (IPD) meta-analysis in which there are repeated measurements for each 

individual, such that observations (level 1) are clustered within individuals (level 2) who 

are clustered within studies (level 3). These two examples illustrate situations that have a 

three-level hierarchical structure with two clustering factors, the individual and either the 

clinic or study. However, in these examples the individual is no longer at the highest level 
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of the data hierarchy. This feature of the data structure will have implications for the model 

formulations described in this chapter.  

As discussed in Chapter 2, there have been numerous extensions to standard joint modelling 

approaches. Nonetheless, one feature of all joint modelling approaches proposed in the 

literature to date has been that they are limited to a two-level hierarchical structure, whereby 

the individual is the only clustering factor. In this chapter, novel methods are described for 

the joint modelling of longitudinal and time-to-event data in the presence of more than one 

clustering factor. The paper in the following section describes the methodology. The main 

application presented in the paper is related to patients with non-small cell lung cancer, 

however, several other motivating examples are also discussed. The methods described in 

the paper have been implemented as part of the rstanarm (Brilleman et al., 2018; Stan 

Development Team, 2017a) R package, which was introduced in Chapter 5. This software 

option makes these methods readily available to other researchers who wish to apply them 

in their own studies. 

 Manuscript 

This section herein contains the following methodological research paper: 

Brilleman SL, Crowther MJ, Moreno-Betancur M, Buros Novik J, Dunyak J, Al-Huniti 

N, Fox R, Hammerbacher J, Wolfe R. Joint longitudinal and time-to-event models for 

multilevel hierarchical data. Submitted for publication. 

 

128



Brilleman et al. Joint models for multilevel hierarchical data. Submitted. 

 

 

Joint longitudinal and time-to-event models for multilevel hierarchical 

data 

Samuel L. Brilleman1,2, Michael J Crowther3, Margarita Moreno-Betancur2,4,5, Jacqueline Buros 

Novik6, James Dunyak7, Nidal Al-Huniti7, Robert Fox7, Jeff Hammerbacher6,8, Rory Wolfe1,2 

 

Author affiliations: 1Department of Epidemiology and Preventive Medicine, School of Public 

Health and Preventive Medicine, Monash University, Melbourne, Australia; 2Victorian Centre for 

Biostatistics (ViCBiostat), Melbourne, Australia; 3Biostatistics Research Group, Department of 

Health Sciences, University of Leicester, Leicester, UK; 4Clinical Epidemiology and Biostatistics 

Unit, Murdoch Children’s Research Institute, Melbourne, Australia; 5Melbourne School of 

Population and Global Health, University of Melbourne, Melbourne, Australia; 6Department of 

Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 
7Quantitative Clinical Pharmacology, IMED Biotech Unit, AstraZeneca, Waltham, MA, USA; 
8Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, 

SC, USA 

*Corresponding author: sam.brilleman@monash.edu  

 

Abstract 

Joint modelling of longitudinal and time-to-

event data has received much attention recently. 

Increasingly, extensions to standard joint 

modelling approaches are being proposed to 

handle complex data structures commonly 

encountered in applied research. In this paper 

we propose a joint model for hierarchical 

longitudinal and time-to-event data. Our 

motivating application explores the association 

between tumor burden and progression-free 

survival in non-small cell lung cancer patients. 

We define tumor burden as a function of the 

sizes of target lesions clustered within a patient. 

Since a patient may have more than one lesion, 

and each lesion is tracked over time, the data 

have a three-level hierarchical structure: 

repeated measurements taken at time points 

(level 1) clustered within lesions (level 2) within 

patients (level 3). We jointly model the lesion-

specific longitudinal trajectories and patient-

specific risk of death or disease progression by 

specifying novel association structures that 

combine information across lower level clusters 

(e.g. lesions) into patient-level summaries (e.g. 

tumor burden). We provide user-friendly 

software for fitting the model under a Bayesian 

framework. Lastly, we discuss alternative 

situations in which additional clustering 

factor(s) occur at a level higher in the hierarchy 

than the patient-level, since this has 

implications for the model formulation. 

 

1. Introduction 

In clinical or epidemiological research 

studies, longitudinal data may be in the form of 

a clinical biomarker that is repeatedly measured 

over time on a given patient, whilst time-to-

event data may refer to the patient-specific time 

from a defined origin (e.g. time of diagnosis of 

a disease) until a clinical event of interest such 

as death or disease progression. A common 

motivation for collecting such data is to explore 

how changes in the biomarker are associated 

with the occurrence of the event. A rapidly 

evolving field of statistical methodology, 

known as “joint modelling”, aims to model both 

the longitudinal and time-to-event data 

simultaneously providing several potential 

benefits over more traditional approaches [1–3]. 

Compared with using the observed biomarker 

measurements as covariates in a time-to-event 

model, a joint modelling approach can protect 

against bias due to missing data or measurement 

error in estimating  the association between the 

value of the biomarker and the risk of 

occurrence of the event [1,4]. Moreover, we can 

explore the associations between more complex 

aspects of the biomarker trajectory (such as the 

rate of change) and the occurrence of the event. 

Lastly, we might wish to use the longitudinal 

biomarker data in the development of a 

“dynamic” risk prediction model, and joint 
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modelling approaches lend themselves to this 

purpose [5,6]. 

The so-called “shared parameter” joint 

modelling approach consists of two regression 

submodels, one for the longitudinal biomarker 

measurements (the “longitudinal submodel”) 

and one for the time-to-event outcome (the 

“event submodel”). Dependence between the 

two submodels is allowed for by assuming that 

the model for the time-to-event outcome 

includes as predictor some functional form of 

the patient-specific parameters from the 

longitudinal submodel, commonly referred to as 

an association structure. In the joint modelling 

literature to date, primary focus has been on a 

situation in which there is a single normally-

distributed biomarker measured repeatedly over 

time for each patient and a unique, possibly 

right-censored, time to a terminating event of 

interest [4,7]. However, a number of extensions 

have been proposed for the standard shared 

parameter joint model, such as competing risks 

[8], interval censored event times [9], non-

normally distributed biomarkers [10], and 

multiple biomarkers [11].  

Nonetheless, a common aspect of the 

proposed methodology has been that the 

longitudinal data have a two-level hierarchical 

structure; longitudinal measurements of the 

biomarker are observed at time points (level 1 

of the hierarchy) which are clustered within 

patients (level 2 of the hierarchy). The patient is 

therefore considered to be the only clustering 

factor.  An example of this data structure is 

shown in Figure 1a. However, there exist many 

situations in clinical and epidemiological 

research in which we wish to analyse 

longitudinal and time-to-event data where the 

longitudinal data component (and potentially 

also the time-to-event component) has a 

hierarchical structure with clustering factors 

beyond just that of the patient.  

In this paper we describe a joint modelling 

approach that can be applied to longitudinal and 

time-to-event data with more than one 

clustering factor. In Section 2 we introduce 

several motivating examples which describe the 

types of data structures our joint modelling 

approach is intended for. In Sections 3 and 4 we 

describe the formulation and estimation of a 

joint model that is suitable when an additional 

clustering factor occurs at a level lower in the 

hierarchy than the patient-level. In Section 5 we 

describe an application in which we use this 

joint model to explore the association between 

tumor burden and risk of death or disease 

progression in non-small cell lung cancer 

(NSCLC) patients undergoing treatment. In 

Section 6 we describe the formulation of the 

joint model under alternative scenarios in which 

the additional clustering factor occurs at a level 

higher in the hierarchy than the patient-level. In 

Section 7 we close with a discussion. 

 

2. Motivating examples 

2.1 Tumor burden and progression-free 

survival in non-small cell lung cancer 

In our primary motivating example interest 

lies in exploring the relationship between tumor 

burden and the risk of death or disease 

progression in patients with non-small cell lung 

cancer (NSCLC). After a patient initiates 

treatment the size of each tumor lesion is 

measured repeatedly over time in order to assess 

the effectiveness of treatment and aid clinical 

decision making. Accordingly, for a given 

patient, we can define the tumor burden as some 

patient-level summary of the sizes of their 

individual tumor lesions. Given that a patient 

may have more than one lesion, our data 

consists of a hierarchy in which the longitudinal 

measurements are observed at time points (level 

1) which are clustered within a specific lesion 

(level 2) for a given patient (level 3), as 

represented in Figure 1b. 

Consideration of the multilevel structure of 

the data is important for several reasons. Firstly, 

the underlying growth trajectories may vary 

across different lesions, even when those lesions 

are clustered within the same patient. We can 

allow for between-lesion variation in the growth 

trajectories through the use of lesion-specific, as 

well as patient-specific, parameters in the 

longitudinal submodel. Equivalently, the 

introduction of lesion-specific parameters in the 

longitudinal submodel allows us to account for 

the within-cluster correlation of longitudinal 

measurements made on the same lesion and 

therefore appropriately estimate standard errors. 

Secondly, the hierarchical structure of the data 

is a key aspect to consider when specifying the 

form of the association between the longitudinal 
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and event processes, something we discuss 

further in Section 3.3. 

2.2 Visual field progression in glaucoma 

Our second motivating example comes from 

research on eye disease. In ophthalmology it is 

of interest to use repeated measurements of eye-

specific biomarkers to help predict the 

occurrence of disease-specific events. For 

example, in glaucoma research we may be 

interested in the association between optic nerve 

head surface depth (ONHSD) and visual field 

progression. Previous studies [12] have used 

joint models to explore this association by 

treating each eye as independent and modelling 

the association between the eye-specific 

longitudinal trajectory for ONHSD and the eye-

specific event endpoint (visual field 

progression). However, this approach ignores 

the dependence between measurements taken 

on the two eyes clustered within a patient. 

Arguably, a more appropriate analysis approach 

would model the correlation between 

measurements taken on a person’s two eyes. 

Hence, consider a joint modelling approach in 

which we assume the ONHSD measurements 

are observed at time points (level 1) which are 

clustered within a specific eye (level 2) for a 

given patient (level 3). We could then explore 

the association between the longitudinal 

trajectory for ONHSD and a patient-specific 

endpoint for the time to visual field progression. 

2.3 Patients within clinics or the meta-

analysis of joint model data 

Our final two motivating examples relate to 

an alternative data structure in which the 

additional clustering factor occurs at a level 

which is higher in the hierarchy than the patient. 

One example is where repeated observation 

times (level 1) exist for patients (level 2) and 

those patients are clustered within clinics (level 

3). Another example is an individual patient 

data (IPD) meta-analysis where observation 

times (level 1) are for patients (level 2) clustered 

within randomised clinical trials (level 3) [13]. 

In both of these examples, we wish to include 

the additional clustering factor (i.e. the clinic or 

the trial) in our joint modelling approach, so that 

we appropriately allow for the correlation 

structure. However, because the additional 

clustering factor occurs at a level higher than the 

patient-level, there are different implications for 

the specification of the joint model association 

structure compared with our previous 

motivating examples. For this reason we 

describe a formulation of the joint model for this 

type of data structure separately; in Section 6 of 

the paper. 

 

3. Model formulation 

3.1 Longitudinal submodel 

Consider the situation in which we have a 

three-level hierarchical structure for our 

longitudinal data, where the patient represents 

the highest level of the hierarchy (in Section 6 

we discuss the situation in which the patient 

does not represent the highest level of the 

hierarchy). We assume our longitudinal 

outcome measurements 𝑦𝑖𝑗𝑘 = 𝑦𝑖𝑗(𝑡𝑖𝑗𝑘) are 

obtained  at a set of time points 𝑘 = 1, … , 𝐾𝑖𝑗 

which are assumed to be nested within unit 

𝑗 (𝑗 = 1, … , 𝐽𝑖) of the level 2 clustering factor 

which in turn is nested within patient 𝑖 (𝑖 =
1, … , 𝑁), the level 3 clustering factor. We model 

the longitudinal outcome in continuous time 

using a generalised linear mixed effects model 

where we assume 𝑌𝑖𝑗(𝑡) is governed by a 

distribution in the exponential family with 

expected value 𝜇𝑖𝑗(𝑡) = 𝑔−1(𝜂𝑖𝑗(𝑡)) for some 

known link function 𝑔(. ). Specific choices of 

family and link function lead to, for example, 

linear, logistic or Poisson regression. We 

specify a three-level hierarchical model for the 

linear predictor 

𝜂𝑖𝑗(𝑡) = 𝑥𝑖𝑗
′ (𝑡)𝛽 + 𝑧𝑖𝑗

′ (𝑡)𝑏𝑖 + 𝑤𝑖𝑗
′ (𝑡)𝑢𝑖𝑗  (1) 

where 𝑥𝑖𝑗(𝑡), 𝑧𝑖𝑗(𝑡), and 𝑤𝑖𝑗(𝑡) are vectors 

of covariates, possibly time-dependent. The 

vector 𝛽 contains fixed-effect parameters, and 

𝑢𝑖𝑗 and 𝑏𝑖 are vectors of level 2 (cluster-

specific) and level 3 (patient-specific) 

parameters, each assumed to be normally 

distributed with mean zero and unstructured 

variance-covariance matrix, that is 𝑢𝑖𝑗 ∼

𝑁(0, 𝛴𝑢) and 𝑏𝑖 ∼ 𝑁(0, 𝛴𝑏). We assume that 

𝑢𝑖𝑗 and 𝑏𝑖 are uncorrelated. 

3.2 Event submodel 

We observe an event time 𝑇𝑖 = 𝑚𝑖𝑛 {𝑇𝑖
∗, 𝐶𝑖}, 

where 𝑇𝑖
∗ denotes the true event time for patient 

𝑖 and 𝐶𝑖 denotes the right-censoring time, and 

define an indicator of observed event 
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occurrence 𝑑𝑖 = 𝐼(𝑇𝑖
∗ ≤ 𝐶𝑖). We model the 

hazard of the event using a proportional hazards 

regression model 

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝 (𝑣𝑖
′(𝑡)𝛾 +

           ∑ 𝛼𝑞𝑓𝑞(𝛩𝑖𝑗(𝑡);  𝑗 = 1, … , 𝐽𝑖))
𝑄
𝑞=1    

(2) 

where ℎ𝑖(𝑡) is the hazard of the event for 

patient 𝑖 at time 𝑡, ℎ0(𝑡) is the baseline hazard 

at time 𝑡, 𝑣𝑖(𝑡) is a vector of covariates with an 

associated vector of fixed-effect parameters 𝛾, 

and ∑ 𝛼𝑞𝑓𝑞(𝛩𝑖𝑗(𝑡);  𝑗 = 1, … , 𝐽𝑖)
𝑄
𝑞=1  forms the 

“association structure” for the joint model 

which consists of some specified set of 

functions 𝑓𝑞(. ) applied to the full set of 

(possibly time-varying) parameters from the 

longitudinal submodel 𝛩𝑖𝑗(𝑡) =

{𝛽, 𝑏𝑖, 𝑢𝑖𝑗, 𝜇𝑖𝑗(𝑡), 𝜂𝑖𝑗(𝑡)} with associated fixed 

effects 𝛼𝑞 (𝑞 = 1, … , 𝑄). The functions 𝑓𝑞(. ) 

might each correspond to a functional of the 

longitudinal submodel parameters for a given 

patient 𝑖and cluster 𝑗, for example, the expected 

value or rate of change in the longitudinal 

biomarker. Alternatively, they might be 

functions of the longitudinal submodel 

parameters for a given patient 𝑖  across all 𝐽𝑖 

clusters, representing different methods for 

combining the level 2 clusters into a patient-

level summary (as described in the next 

section). We refer to the fixed effects 𝛼𝑞 as 

“association parameters” since they quantify the 

magnitude of the association between aspects of 

the longitudinal process and the event process. 

In the next section we describe the variety of 

ways in which the association structure for the 

joint model can be specified.  

3.3 Association structures for patient-level 

summaries 

Given that the event time 𝑇𝑖 is measured at 

the patient-level, the patient represents the level 

of the hierarchy at which our primary interest 

lies for understanding the association between 

the longitudinal and event processes. 

Accordingly, we wish to formulate a model that 

captures the association between the 

longitudinal and event processes at any given 

time 𝑡 in a meaningful way at the patient-level. 

A decision is required about how information 

from the level 2 clustering factor (that is, the 

clustering factor between the patient-level and 

the observation-level) is used in the formulation 

of the association structure.  

Since the number of level 2 units may differ 

for each patient (i.e. it isn’t necessarily the case 

that 𝐽𝑖 = 𝐽𝑖′  for all 𝑖 ≠  𝑖′) we must combine the 

information in the level 2 units into some 

patient-level time-specific summary. Obvious 

choices for a patient-level summary measure are 

likely to be the summation, average, maximum 

or minimum taken across the level 2 units 

within patient 𝑖. That is  

𝑓𝑞(𝛩𝑖𝑗(𝑡);  𝑗 = 1, … , 𝐽𝑖) = ∑ 𝜇𝑖𝑗(𝑡) 

𝐽𝑖

𝑗=1

 (3) 

  𝑓𝑞(𝛩𝑖𝑗(𝑡);  𝑗 = 1, … , 𝐽𝑖) =

                                𝐽𝑖
−1 ∑ 𝜇𝑖𝑗(𝑡)

𝐽𝑖
𝑗=1    

(4) 

𝑓𝑞(𝛩𝑖𝑗(𝑡);  𝑗 = 1, … , 𝐽𝑖) =

                   𝑚𝑎𝑥 (𝜇𝑖𝑗(𝑡);   𝑗 = 1, … , 𝐽𝑖)   
(5) 

𝑓𝑞(𝛩𝑖𝑗(𝑡);  𝑗 = 1, … , 𝐽𝑖) =

                    𝑚𝑖𝑛 (𝜇𝑖𝑗(𝑡);   𝑗 = 1, … , 𝐽𝑖)  
(6) 

The association structure resulting from 

equation (3) assumes that the hazard of the event 

for patient 𝑖 at time 𝑡 is associated with the sum 

of the expected values (at time 𝑡) for each of the 

level 2 units clustered within that patient. In 

contrast, the 𝐽𝑖
−1term in equation (4) provides 

us with the average of the level 2 cluster-

specific expected values within patient 𝑖 rather 

than their summation alone. Lastly, equations 

(5) and (6), respectively, assume that the hazard 

of the event for patient 𝑖 at time 𝑡 is associated 

with the level 2 cluster (within patient 𝑖) that has 

the largest or smallest expected value at time 𝑡. 

It is possible for more than one of these 

summary functions to be included in a single 

model (i.e. 𝑄 > 1). Moreover, other summary 

functions are possible but are not described 

here. 

The most appropriate summary function(s) 

may be determined based on clinical context, or 

by choosing the association structure that 

provides the best model performance based on 

some criterion. For instance, returning to the 

first motivating example introduced in Section 

2, we may believe that risk of death or disease 

progression for a patient with NSCLC is driven 

by treatment-failure occurring at a single lesion. 

We may therefore assume the hazard of the 

event for patient 𝑖 at time 𝑡 is associated with 
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the maximum (i.e. largest) of the lesion-specific 

expected values, since this would represent the 

lesion with the most advanced disease, for 

example due to it having the worst treatment 

response.   

Moreover, we could easily replace the 𝜇𝑖𝑗(𝑡) 

in equations (3) through (6) with some other 

function of the longitudinal submodel 

parameters, such as the level 2 cluster-specific 

rate of change in the marker at time 𝑡 (i.e. 
𝑑𝜇𝑖𝑗(𝑡)

𝑑𝑡
)  or the area under the level 2 cluster-

specific marker trajectory up to time 𝑡 (i.e. 

∫ 𝜇𝑖𝑗(𝑢)
𝑡

0
𝑑𝑢). For instance, we may assume that 

the lesion with largest growth rate may be most 

informative of treatment failure. Such 

extensions follow naturally from association 

structures that have been proposed elsewhere 

for shared parameter joint models [11,14]. 

The specifications in equations (3) and (4) 

both assume a constant magnitude of 

association between the expected value of each 

level 2 unit and the hazard of the event; that is, 

there is an implicit assumption that the level 2 

units within a patient are exchangeable since 

their expectations are each multiplied by the 

same fixed effect association parameter 𝛼𝑞. It is 

worth noting that this is in contrast to the 

situation in which we have multiple longitudinal 

biomarkers (for example lesion size and 

circulating DNA) each measured repeatedly 

over time. In this situation the multiple 

biomarkers within a patient are not 

exchangeable and therefore each biomarker 

would have a different coefficient quantifying 

its association with the hazard of the event. 

Methods for the joint modelling of multiple 

longitudinal biomarkers and time-to-event data, 

where the multiple biomarkers are not 

exchangeable, have been described elsewhere 

[11,15,16]. Although it is outside the scope of 

this paper, the methodology described here 

could be extended to a situation in which we 

have multiple longitudinal biomarkers, some of 

which may or may not have additional levels of 

clustering. This type of data structure is 

therefore represented in Figure 1c. 

4. Model estimation 

The joint model proposed in Section 3 can be 

estimated using the ‘stan_jm’ modelling 

function within the rstanarm R package [17]. 

The association structure can be based on the 

expected value and/or slope of the longitudinal 

biomarker, however, currently only a single 

patient-level summary function (summation, 

average, maximum, or minimum) can be chosen 

by the user (this restriction may be relaxed in a 

future release). Estimation of the model requires 

a full Bayesian specification with prior 

distributions on all unknown parameters. We 

provide further details of the estimation (for 

example prior distributions and computation) in 

the Supplementary Materials. 

5. Application 

We demonstrate the use of our modelling 

approach by exploring the association between 

tumor burden and the hazard of death or disease 

progression amongst NSCLC patients 

undergoing treatment. 

5.1 Data 

The Iressa Pan-Asia Study (IPASS) was an 

open label, phase 3 trial of 1,217 untreated 

NSCLC patients in East Asia randomized to: (i) 

gefitinib (250mg per day), or (ii) carboplatin 

(dose calculated to provide 5-6 mg per milliliter 

per minute) plus paclitaxel (200 mg per square 

meter of body-surface area) [18]. The primary 

endpoint was progression-free survival, 

however, the study was extended to track 

overall survival in the longer term. We 

restricted our analyses to the 430 (35%) patients 

with an available test result for epidermal 

growth factor receptor (EGFR) mutation since 

this has been shown to be associated with both 

tumor dynamics and treatment response [19]. 

We thereby defined a group covariate 

corresponding to either: (i) EGFR+, (ii) EGFR- 

and receiving gefitinib; or (iii) EGFR- and 

receiving carboplatin plus paclitaxel. 

5.2 Model specification 

5.2.1 Longitudinal submodel 

We modelled repeated measurements of the 

longest diameter (in millimetres) of each lesion 

using a linear mixed effects model (identity 

link, normal distribution) with a linear predictor 

as in equation (1) where:  the observation-level 

covariates with fixed (population-average) 

effects, 𝑥𝑖𝑗(𝑡), included an intercept, the 3-

category EGFR-group covariate, linear and 

quadratic terms for time, and an interaction 
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between group and each of the linear and 

quadratic terms for time; the patient-level vector 

𝑧𝑖𝑗(𝑡) included an intercept only; and the lesion-

level vector 𝑤𝑖𝑗(𝑡)included an intercept, and 

linear and quadratic terms for time. This 

specification allowed for lesion-specific 

nonlinear (quadratic) evolutions of the 

longitudinal trajectory, while also allowing the 

average (i.e. population-level) estimate of the 

nonlinear longitudinal trajectory to differ 

between the three groups (through the group by 

time interaction terms). 

5.2.2 Event submodel 

We modelled the hazard of death or disease 

progression using the proportional hazards 

model in equation (2). We approximated the log 

baseline hazard using B-splines with 6 degrees 

of freedom and included a 3 category physical 

functioning measure (normal activity; restricted 

activity; in bed >50% of the time) [20] as a 

baseline covariate in 𝑣𝑖(𝑡). We considered 

several models which each differed in terms of 

their association structure. Specifically we 

considered the following: (i) no association 

structure (i.e. no biomarker information in the 

event submodel), (ii) association structures 

based on the sum, average, maximum or 

minimum of the lesion-specific expected values 

(i.e. the association structures defined in 

equations (3) through (6)), and (iii) association 

structures based on both the lesion-specific 

expected value and slope, that is an association 

structure of the form 

∑ 𝛼𝑞𝑓𝑞 (𝛩𝑖𝑗(𝑡))𝑄
𝑞=1 =

               𝛼1 𝑓(𝜇𝑖𝑗(𝑡);  𝑗 = 1, … , 𝐽𝑖) +

                       𝛼2 𝑓 (
𝑑𝜇𝑖𝑗(𝑡)

𝑑𝑡
;  𝑗 = 1, … , 𝐽𝑖)  

(7) 

where the function 𝑓(. ) was taken to be 

either the sum, average, maximum or minimum, 

𝜇𝑖𝑗(𝑡) is the size and 
𝑑𝜇𝑖𝑗(𝑡)

𝑑𝑡
 is the rate of change 

in the size of lesion 𝑗 in patient 𝑖 at time 𝑡, 𝐽𝑖 is 

the total number of target lesions identified for 

patient 𝑖 at baseline, and 𝛼1 and 𝛼2 are 

association parameters. 

5.3 Model comparison 

An ideal feature of our model would be that 

it is able to inform clinical decision making by 

accurately predicting a patient’s future risk of 

death or disease progression in the clinical 

setting. We therefore compared different 

possible association structures for our proposed 

joint model using a measure of predictive 

accuracy for the event outcome. Specifically, 

we used the estimated area under the (time-

dependent) receiver operating characteristic 

curve (AUC) to assess how well each of the 

models discriminated between those patients 

who did and did not have the event [3].  

To do this we first used the fitted joint model 

to generate conditional survival probabilities for 

each patient at some time horizon 𝑡𝐿 + 𝛥𝑡, 

conditional on: (i) their still being at risk at some 

landmark time 𝑡𝐿, and (ii) their longitudinal 

biomarker data up to the landmark time 𝑡𝐿 

(following the methods described in [3]). These 

survival probabilities were then used in 

combination with the observed event times and 

censoring indicators for each patient, taken over 

the interval (𝑡𝐿 ,  𝑡𝐿 + 𝛥𝑡), to calculate the time-

dependent AUC measure. 

5.4 Results 

In our analysis, 360 (84%) of the 430 

patients progressed or died prior to censoring. 

The overall Kaplan-Meier curve is shown in 

Figure 2. There were 1209 lesions across the 

430 patients, and 138 (32%), 101 (23%), 71 

(17%) and 120 (28%) patients with 1, 2, 3 or 4+ 

lesions, respectively. A total of 6132 size 

measurements were observed, corresponding to 

a median number of 5 (IQR: 3 to 7; range: 1 to 

17) measurements per lesion. 

Table 1 shows the estimated AUC values for 

the fitted models. The results are shown for a 

landmark time of 𝑡 = 5 months and a horizon 

time of 𝑡 + 𝛥𝑡 = 10 months. For an association 

structure based on the expected value (i.e. 

diameter of the lesion) only, a summary 

function based on the sum or maximum of the 

lesions showed better discriminatory 

performance compared with using the mean or 

minimum. We found that also including the 

slope (i.e. rate of change in the diameter of the 

lesion) in the association structure improved the 

predictive performance. When both the 

expected value and slope were used in the 

association structure then summaries based on 

the sum, mean or maximum of the lesions all 

performed similarly. The summary based on the 

minimum (i.e. size of the smallest lesion, and 

rate of change in the slowest growing lesion, at 
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time 𝑡) was the worst in terms of predicting the 

risk of death or disease progression. These 

results are in line with what we would expect 

from a clinical perspective, that is, those 

summaries that incorporate information on the 

largest and/or fastest growing lesion at time 𝑡 

are likely to provide better predictive 

performance. This is because they capture 

information about the most aggressive tumor, 

which may have escaped treatment and is 

therefore likely to impact most severely on the 

risk of death disease progression and death. 

Table 2 shows the parameter estimates from 

the model with the best performance based on 

the AUC measure (with an association structure 

based on the maximum of the lesion-specific 

expected values and slopes). The estimated 

hazard ratio corresponding to the first 

association parameter (i.e. 𝑒𝑥𝑝(𝛼1)) was 1.011 

(95% credible interval (CrI): 1.004 to 1.017), 

suggesting that a one millimetre increase in the 

diameter of a patient’s largest lesion was 

associated with a 1.1% (95% CrI: 0.4 to 1.7%) 

increase in their hazard of death or disease 

progression (conditional on the other covariates 

in the model). Similarly, a one millimetre per 

month increase in the rate of change of their 

fastest growing lesion was associated with a 

56% (95% CrI: 42 to 75%) increase in their 

hazard. Figure 3 shows the fitted lesion-specific 

longitudinal trajectories and observed 

measurements for a selection of patients under 

the fitted model. 

6. Alternative data structure: clustering 

above the patient-level  

In our analysis of the IPASS data, patient 

represented the top level of the data hierarchy 

and the additional clustering factor – “lesion” – 

occurred at a level which was lower in the 

hierarchy than patient; that is, lesions were 

clustered within patients rather than patients 

being clustered within lesions. An alternative 

situation is that in which the additional 

clustering factor(s) occur at a level which is 

higher in the hierarchy than the patient-level. 

An example is where repeated observation 

times (level 1) exist for patients (level 2) and the 

patients are clustered within clinics (level 3). 

Another example is an individual patient data 

(IPD) meta-analysis with repeated observation 

times (level 1) for patients (level 2) clustered 

within randomised clinical trials (level 3) [13].  

Recall however that the event time 𝑇𝑖 is 

measured at the patient-level and, therefore, the 

patient represents the level of the hierarchy at 

which our primary interest lies for 

understanding the association between the 

longitudinal and event processes. For this 

reason, the relative locations within the 

hierarchy of the patient and the additional 

clustering factor have implications for 

specifying the association structure of the joint 

model.  

6.1 Model formulations based on a patient-

level association structure 

In Section 3.3 we proposed association 

structures based on a patient-level time-specific 

summary of the 𝐽𝑖 level 2 units clustered within 

patient 𝑖. However, with clustering above the 

patient-level, there is no need to construct such 

a patient-level summary.  

Suppose that the longitudinal outcome 

𝑦𝑙𝑖𝑘 = 𝑦𝑙𝑖(𝑡𝑙𝑖𝑘) is measured at time point 

𝑘 (𝑘 = 1, … , 𝐾𝑙𝑖) which is nested within unit 

𝑖 (𝑖 = 1, … , 𝑁𝑙) of the level 2 clustering factor 

(the patient) which in turn is nested within unit 

𝑙 (𝑙 = 1, … , 𝐿) of a level 3 clustering factor 

(clinic, say, for example). If we again model the 

longitudinal outcome in continuous time using 

a generalised linear mixed effects model where 

𝑌𝑙𝑖(𝑡) is governed by a distribution in the 

exponential family with expected value 

𝜇𝑙𝑖(𝑡) = 𝑔−1(𝜂𝑙𝑖(𝑡)) we might, for example, 

consider a specification for the longitudinal 

submodel of the form 

 𝜂𝑙𝑖(𝑡) = 𝑥𝑙𝑖
′ (𝑡)𝛽 + 𝑧𝑙𝑖

′ (𝑡)𝑏𝑙𝑖 + 𝑞𝑙𝑖
′ (𝑡)𝑐𝑙  (8) 

where 𝑥𝑙𝑖(𝑡), 𝑧𝑙𝑖(𝑡) and 𝑞𝑙𝑖(𝑡) are vectors of 

covariates, possibly time-dependent, 𝑏𝑙𝑖 still 

represents the vector of patient-specific 

parameters (but now patient 𝑖 is nested within 

the level 3 cluster 𝑙), and 𝑐𝑙 represents the vector 

of level 3 parameters such that 𝑐𝑙 ∼ 𝑁(0, 𝛴𝑐). 

The corresponding specification of the event 

submodel may take the form 

ℎ𝑙𝑖(𝑡) = 
         ℎ0(𝑡)𝑒𝑥𝑝 (𝑣𝑙𝑖

′ (𝑡)𝛾 + 𝛼 𝜇𝑙𝑖(𝑡)) 
(9) 

Because the additional clustering occurs at a 

level in the hierarchy that is higher than the 

patient we can simply use an association 

structure based on the patient-level expected 

value of the longitudinal outcome, without any 
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need to derive a summary quantity based on 

lower-level units. The specification in (9) would 

assume that the hazard of the event for patient 𝑖 
at time 𝑡 is associated with the patient-specific 

expected value of the longitudinal marker at 

time 𝑡, incorporating the effects of any higher 

level clustering. Note that the specification in 

(9) could be easily extended to any other 

patient-level function of the longitudinal 

submodel parameters, such as the patient-

specific rate of change in the marker (i.e. slope) 

at time 𝑡 or the area under the patient-specific 

marker trajectory (i.e. integral) up to time 𝑡. 

A possible extension would be to include a 

shared frailty term in the event submodel 

 ℎ𝑙𝑖(𝑡) = 
    ℎ0(𝑡)𝑒𝑥𝑝 (𝑣𝑙𝑖

′ (𝑡)𝛾 + 𝛼 𝜇𝑙𝑖(𝑡) + 𝛿𝑙)  
(10) 

where 𝛿𝑙 is, for example, assumed to follow 

a normal or log-Gamma distribution. The 

inclusion of the shared frailty term does not 

induce an association with the longitudinal 

submodel, but it does allow for correlation in the 

event times of patients within a level 3 cluster. 

Note that if the variance of the 𝛿𝑙 parameters is 

close to zero, then this would suggest there is 

little within-cluster correlation in the event 

times and the shared frailty term could be 

dropped from the model. Moreover, if the 

number of level 3 groups was small then another 

alternative would be to include the level 3 group 

as a fixed effect covariate in the event submodel 

or as a stratification factor for the baseline 

hazard. The benefit of these latter models is that 

they may be computationally simpler than 

specifying a shared frailty term as a random 

effect. 

6.2 Model formulation based on a higher-

level association structure 

An alternative possibility is that the hazard 

of the event for patient 𝑖 need only be related to 

the higher-level cluster’s deviation from the 

average. That is, we can consider a shared 

random effects joint model of the form 

ℎ𝑙𝑖(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝 (𝑣𝑙𝑖
′ (𝑡)𝛾 + 𝛼 𝑐𝑙) (11) 

where 𝑐𝑙 might, for example, represent the 

clinic-level random intercept. In this case, we 

would have a model in which we assume that 

the hazard of the event for patient 𝑖 is associated 

with the way in which their clinic’s biomarker 

measurements deviate from the average clinic, 

but not with any time-varying characteristics of 

the patient themselves. Here, the random effect 

𝑐𝑙 serves two purposes in the event submodel. 

First, it allows for within-cluster correlation in 

the event times (as previously described for the 

shared frailty). Second, it allows for dependence 

between the event and longitudinal processes 

through a shared parameter at the level of 

clustering factor 𝑙. 

7. Discussion 

Increasingly complex data structures are 

being accommodated under a joint longitudinal 

and time-to-event modelling framework. In this 

paper we have described a new joint modelling 

approach that allows for multilevel hierarchical 

data, where the data structure includes 

clustering factors beyond that of the individual. 

Such data structures commonly appear in 

clinical and epidemiological research, however, 

they have not previously been incorporated into 

a joint modelling framework. Standard joint 

modelling approaches aim to model patient-

level measurements of a clinical biomarker, 

however, greater flexibility can be achieved by 

incorporating both patient-specific and cluster-

specific effects in the longitudinal submodel 

when those levels of clustering are present in the 

underlying data structure. Moreover, it allows 

an additional set of association structures to be 

used for modelling the association between the 

longitudinal biomarker and the patient-level risk 

of the event. We proposed a set of possible 

association structures that could be used in most 

settings, however, the most appropriate choice 

of association structure is likely to depend on 

the primary research question and data structure 

that is relevant to the application at hand. By 

incorporating the multilevel structure into our 

joint modelling approach, we are able to 

formulate a model that answers the research 

question appropriately. For instance, in our 

application, patient-level summaries of the 

lesion-specific trajectories are likely to be 

meaningful in a way that quantities obtained by 

ignoring the lesion level would not be.  

A potential limitation of the modelling in our 

application is that the observed event times were 

subject to interval censoring. This interval 

censoring is evident from the “steps” that can be 

seen in the Kaplan-Meier curve in Figure 2. This 

is due to clinicians in the IPASS trial declaring 
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disease progression at the scheduled clinic 

visits. In our application we ignored this interval 

censoring and so an avenue for future work will 

be to accommodate this interval censoring 

within our proposed joint modelling framework. 

Moreover, in future work, we would like to 

separately assess the competing event outcomes 

of death and disease progression by considering 

cause-specific competing risks event 

submodels. In this way, we will be able to 

separate out the cause-specific associations 

between tumor burden and each of the 

competing events. 

A significant strength of this paper is that our 

proposed model, described in Section 3, has 

been implemented as part of the rstanarm R 

package. A benefit of having implemented this 

model as part of that package is that researchers 

can easily fit the model to their data, via a user-

friendly interface with customary R formula 

syntax and data frames. The back-end 

estimation of the model is carried out under a 

full Bayesian specification with priors on all 

unknown parameters. A variety of prior 

distributions are available to the user, as well as 

a variety of exponential family and link function 

options for the longitudinal outcome, thereby 

providing significant flexibility. In addition, the 

package allows users to estimate a joint model 

with multiple longitudinal outcomes (i.e. a 

multivariate joint model) of which one or more 

can have the multilevel structure described in 

Section 3. We hope that by providing user-

friendly software and example code 

(Supplementary Materials) for fitting the 

proposed model, we will help to facilitate its use 

in a wide variety of applications. 
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Figure 1. Example of the hierarchical structure of joint model data under three possible scenarios: 

(a) one longitudinal biomarker (tumor size) where the patient is the only clustering factor; (b) one 

longitudinal biomarker (tumor size) where there are two clustering factors (lesions clustered 

within patients); (c) two longitudinal biomarkers (tumor size and circulating DNA), one of which 

has one clustering factor (the patient), and one of which has two clustering factors (lesions 

clustered within patients). 
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Figure 2. Overall Kaplan-Meier curve for progression-free survival. The values provided at the 

top of the plot are the numbers of patients still at risk for the event. 
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Figure 3. Observed longitudinal biomarker measurements (longest diameter of the lesion) and the 

fitted lesion-specific longitudinal trajectories (with 95% prediction intervals) under the joint 

model, for a selection of patients. Each panel of the figure shows a different patient, with some 

patients having multiple lesions. The dashed vertical line shows each patient’s event or censoring 

time. 

 

 

 

  

142



Brilleman et al. Joint models for multilevel hierarchical data. Submitted. 

 

 

Table 1. Estimated time-dependent AUC for the proposed joint model using various association 

structures. The AUC is calculated using a landmark time of 𝑡 = 5 months and horizon time of 𝑡 =

10 months.  

Association structure Time-dependent AUC 

No biomarker data (i.e. no association structure) 0.50 

  

Lesion-specific value  

  Sum 0.62 

  Average 0.56 

  Maximum 0.61 

  Minimum 0.55 

  

Lesion-specific value & slope  

  Sum 0.65 

  Average 0.64 

  Maximum 0.66 

  Minimum 0.59 

Abbreviations. AUC: area under the (receiver operating characteristic) curve. 
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Table 2. Fixed effect parameter estimates (posterior means and 95% credible interval limits) from 

the joint model. The estimates for the event submodel are hazard ratios and the coefficients for the 

B-splines baseline hazard have been omitted. 

Parameter Estimate Lower Upper 

Longitudinal submodel    

   Intercept 23.0 21.3 24.7 

   Group (ref: EGFR+)    

       EGFR-, carboplatin plus paclitaxel 4.0 0.8 7.1 

       EGFR-, gefitinib 16.9 13.2 20.4 

   Time effects    

       Linear term (orthogonalised) -0.1 -73.3 76.7 

       Quadratic term (orthogonalised) 450.3 391.6 512.5 

   Group * Linear interaction    

      EGFR-, carboplatin plus paclitaxel * Linear 315.2 195.1 438.4 

      EGFR-, gefitinib * Linear 390.0 127.5 660.4 

   Group * Quadratic interaction    

      EGFR-, carboplatin plus paclitaxel * Quadratic 23.7 -74.3 123.4 

      EGFR-, gefitinib * Quadratic -524.8 -697.0 -351.1 

    

Event submodel    

   Physical functioning (ref: in bed >50% of the time)    

       Normal activity 0.6 0.4 1.0 

       Restricted activity 0.6 0.4 1.0 

   Association parameters (exponentiated)    

       Value (diameter of largest lesion at time 𝑡) 1.011 1.004 1.017 

       Slope (rate of change in fastest growing lesion at time 𝑡) 1.56 1.42 1.75 

Abbreviations. ref: reference category; EGFR: epidermal growth factor receptor (mutation status). 
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Chapter 7:  Discussion 

 Summary of the findings and contributions 

The research presented in this thesis has covered three key areas related to the joint 

modelling of longitudinal and time-to-event data. First, the application of the methods in 

order to help answer research questions of importance to health. Second, the development 

of a joint modelling framework that accommodates multilevel hierarchical data structures 

encountered in a number of clinical and epidemiological research studies. Third, the 

development of software for estimating both univariate and multivariate joint models under 

a Bayesian approach. 

Chapter 3 and 4 of the thesis each described an applied research project. The first project, 

in Chapter 3, involved modelling longitudinal changes in disability and the risk of death in 

a cohort of older Americans. Specifically, the analysis was based on a shared parameter 

joint modelling approach with a current value association structure. The primary research 

question in the study was to examine the effect that community-level disaster exposure may 

have on an individual’s disability trajectory or their risk of death. The joint modelling 

approach allowed this research question to be answered, whilst simultaneously accounting 

for: (i) missingness in the longitudinal disability information that is attributable to 

informative dropouts due to death; (ii) adjustment for the effect of the underlying (error-

free) disability measure on the risk of death; and (iii) the possible joint dependence of both 

disability and risk of death on the primary exposure variable in the study (i.e. disaster 

exposure). From the findings of the study there was no evidence to suggest that community-

level disaster exposure affected an individual’s longitudinal disability trajectory or risk of 

death. However, it remains unclear whether this was attributable to a relatively weak 

measure of disaster exposure, the broad definition of a “disaster” event, or the true absence 

of an underlying association between disaster exposure and disability or death. 
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The second applied project, in Chapter 4, involved patients with end-stage kidney disease 

(ESKD) who were undergoing haemodialysis. The project investigated the associations 

between longitudinal changes in BMI and the competing risks of either transplant or death 

without transplant in those patients. The study was based on a hypothesis that 

haemodialysis patients could be meaningfully separated into a set of underlying (“latent”) 

groups that are related to longitudinal changes in BMI. That is, the underlying latent groups 

are distinguishable with regard to their longitudinal BMI trajectories. Moreover, it was 

hypothesised that these differences in the underlying longitudinal BMI trajectories would 

be associated with differences in the rates of either: receiving a kidney transplant, or dying 

without having received a transplant. A latent class joint modelling approach was well 

suited to this project, since it helped to identify latent classes that were based on differences 

in both the marginal longitudinal BMI trajectory and the cause-specific hazard functions 

for death and transplant. The findings from the study suggested that there were five latent 

classes, and that the longitudinal BMI trajectories were associated with differences in the 

rates of death or transplant. This adds insight to the so-called “obesity paradox” in dialysis, 

since previous studies had identified that rates of death are associated with cross-sectional 

measures of BMI, but few studies had considered the importance of longitudinal changes 

in BMI. The study findings suggested that, although BMI at the initiation of haemodialysis 

is important, it is changes in BMI over the course of haemodialysis that are more strongly 

associated with differences in the rates of death. 

In the latter parts of this thesis, namely Chapters 5 and 6, the focus shifted from applied 

work using joint modelling approaches to methodological and software developments. 

Chapter 5 focussed on describing the development of software for joint modelling under a 

Bayesian framework. This was implemented as an R package, with the back-end estimation 

of the joint models achieved using the Bayesian software Stan. Initially, the motivations 

for developing the software were that, in 2016 at the time of commencing the work, several 

joint model formulations were not widely accommodated by existing software. In 

particular, software for estimating joint models with multiple longitudinal outcomes was 

not readily available. However, given that joint modelling is a fertile area of research, it is 

unsurprising that during 2017 there were several developments in this area, as discussed in 

Chapter 5. Nonetheless, the software package described in Chapter 5 makes several 

important and novel contributions. It can be used to estimate joint models with multiple 

longitudinal outcomes, multilevel clustering structures, non-normally distributed 
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longitudinal outcomes (e.g. binary or counts), a range of association structures, interaction 

effects in the association structure, and more. Several of these features are not readily 

available in most other packages. In addition, estimating the model under a Bayesian 

framework can provide other advantages. For instance, users of the package have a choice 

of prior distributions available for each of the parameters. This includes, for example, 

shrinkage priors (Piironen and Vehtari, 2017). They also have the opportunity to 

incorporate informative or semi-informative prior information into the model. Moreover, a 

Bayesian approach also allows one to explore the full posterior distribution of each 

parameter, to make direct probability statements with regard to the parameters, and to easily 

calculate uncertainty bounds on complex functions of the parameters such as dynamic 

predictions of future event risk.  

The importance of having freely available, general purpose, user-friendly software is 

becoming increasingly evident in applied biostatistics. Moreover, one needs to be able to 

communicate the use of that software in order to facilitate its uptake in applied work. For 

example, the Journal of Statistical Software (JSS) provides one of the few high quality peer-

reviewed outlets for publishing papers describing software implementations of statistical 

methodology. Between 2003 and 2016, the JSS grew from being ranked amongst the lowest 

quartile of journals in probability and statistics, to being the fifth highest ranked journal in 

probability and statistics (SCImago, 2007). Similarly, the high-profile International Journal 

of Epidemiology (IJE) recently established a “Software Application Profile (SAP)” section 

to communicate practical, freely available, software applications to epidemiological 

researchers (Forgetta and Richards, 2016). Moreover, one can observe the growth in 

popularity of vignettes for R packages, which serve as an ideal alternative that circumvents 

many of the long delays associated with the peer-review and publishing process of 

traditional journals (Björk and Solomon, 2013; Wickham, 2015). However, the downside 

for vignettes is that a lack of peer-review may lead to compromised quality of the final 

output, in some cases. Nonetheless, these examples, to some degree, show the increasing 

value and importance that is being placed on translating methodological developments in 

statistics into usable, general-purpose, software implementations.  

In Chapter 6, a methodological framework was developed for the joint modelling of 

longitudinal and time-to-event data, when the underlying data structure contains additional 

clustering factors beyond just that of the individual. The primary motivating application 

was related to non-small cell lung cancer. However, the methodological framework can be 
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applied in a variety of other settings; for instance, ophthalmology and meta-analysis as have 

been discussed in the chapter. Importantly, the methods were also implemented in the user-

friendly software described in Chapter 5. 

 Strengths, limitations, and avenues for future work 

7.2.1 Definitions of disaster exposure 

The applied study in Chapter 3 is the first study to consider a comprehensive range of 

disaster events (for example, floods, fires, earthquakes, tornados, etc.) and their impact on 

disability and death, rather than focussing on a single disaster event (or type of disaster 

event). Although the definition of a disaster was based on the US Federal Emergency 

Management Agency’s (FEMA) definition of a major declaration, it is possible that this 

definition was too broad for our epidemiological-related purposes. Therefore, with regard 

to the applied project in Chapter 3, future work should involve identifying opportunities for 

constructing an improved measure of disaster exposure. An improved measure of disaster 

exposure, whether defined at the community-level or individual-level, could then be 

incorporated into the shared parameter joint modelling framework discussed in Chapter 3. 

7.2.2 Dialysis modalities 

The applied study in Chapter 4 is one of very few studies that have considered longitudinal 

changes in BMI during haemodialysis and their association with rates of death and 

transplant. The study used a large, registry-based, cohort of all patients undergoing chronic 

haemodialysis treatment in Australia and New Zealand over a ten-year period. The findings 

of the study can therefore be considered generalizable to countries with similar clinical 

practices and haemodialysis patient populations as Australia. However, the effects of 

haemodialysis on weight gain or loss are potentially quite different to those of peritoneal 

dialysis. During peritoneal dialysis, a patient’s blood is purified internally (i.e. inside the 

body) through the injection of a fluid that often contains glucose. Therefore, calories in the 

glucose can potentially lead to weight gain in the patient. Conversely, under haemodialysis, 

an individual’s blood is purified externally (i.e. outside of the body) and therefore no 

calories are absorbed by the patient during the dialysis process. These differences in the 

clinical procedures could lead to significant differences in the underlying BMI trajectories 

for patients undergoing treatment and, potentially, be associated with differences in the 
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underlying rates of transplant or death. Therefore, the main avenue identified for future 

work in this area is to perform a similar study in a peritoneal dialysis patient population. 

7.2.3 Limitations of registry-based data 

A major limitation of the applied study in Chapter 4 was the infrequent measurement 

schedule for BMI. This likely limited the ability of the analysis to capture shorter-term 

fluctuations in weight, potentially leading to less diversity across the BMI trajectories for 

the different latent classes. The study was based on data from a nationwide registry, for 

which BMI measurements are only recorded approximately once per year for each patient. 

Therefore, although more frequent measurements of BMI would have been desirable for 

this study, such data would likely need to come from a new, or additional, data source.  

7.2.4 Uninformative visiting process 

As discussed in Section 2.3.5, a common assumption in joint modelling is that the timing 

of the measurements of the longitudinal biomarker are uninformative. This assumption is 

likely to be reasonable in the three main applications discussed in this thesis. In the first 

project, in Chapter 3, the longitudinal outcome was a disability score. The disability score 

measurements were derived from data obtained as part of a nationally representative 

longitudinal cohort study for which the interview schedule was likely to be pre-specified, 

or at least unrelated to the participants’ responses. In the second project, in Chapter 4, the 

longitudinal biomarker measurements were of BMI. These measurements were obtained 

from a national registry that collected each patient’s clinical data as part of an annual 

survey. The timing of the measurements for a given patient are therefore unlikely to be 

associated with the patient’s BMI value. Lastly, in the methodological project discussed in 

Chapter 6, the primary motivating application was related to patients with non-small cell 

lung cancer. Tumour size measurements for each patient were collected as part of the 

IPASS clinical trial. The measurement schedule for the clinical trial was likely pre-

specified and, therefore, it is unlikely that the timing of the biomarker measurements were 

related to a patient’s disease state.  

Although assumption of an uninformative visiting process was likely to be reasonable for 

the applications presented in this thesis, the same will not always be true in practice. For 

instance, an application that was explored but not pursued during this PhD candidature was 

related to patients with multiple sclerosis. The data for the project came from a clinical 
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database of multiple sclerosis patients, in which data was recorded at clinic visits. However, 

clinic visits for these patients tend to occur when the disease is in an exacerbation stage, 

and are less likely to occur when the disease is under control. Therefore, any biomarker 

measurement related to the disease state is likely to be subject to an informative 

measurement schedule. In this type of situation, one must model the informative visiting 

process alongside the longitudinal biomarker and event processes. Such methods have been 

described by several authors (Han et al., 2014; Liu et al., 2008), however, this in an ongoing 

area for methodological development. 

7.2.5 Dynamic predictions under multilevel joint models 

The methodological project in Chapter 6 described the development of a framework for 

joint modelling in the presence of multiple clustering factors. The paper in Section 6.2 

focussed primarily on the formulation of the multilevel hierarchical joint model, association 

structures, and estimation. However, in the application, several joint models with different 

association structures were compared using a time-dependent measure of discrimination. 

The time-dependent measure of discrimination was based on the area under the receiver 

operating characteristic curve (AUC), defined by taking a landmark time of 5 months, and 

a horizon time of 10 months.  

In the absence of multiple clustering factors (that is, if the individual is the only clustering 

factor), the calculation of a time-dependent AUC measure proceeds in the following 

manner. For some individual 𝑖 who is still at risk at a landmark time 𝑡𝐿, longitudinal 

biomarker data observed between times 0 and 𝑡𝐿 can be used in the calculation of a 

conditional survival probability  

 𝑆𝑖(𝑡𝐿 + Δ𝑡 | �̃�𝑖, 𝜽, 𝑇𝑖
∗ > 𝑡𝐿) = 𝑃(𝑇𝑖

∗ > 𝑡𝐿 + Δ𝑡 ∣  �̃�𝑖, 𝜽, 𝑇𝑖
∗ > 𝑡𝐿) (54) 

where 𝑡𝐿 + Δ𝑡 denotes a horizon time for evaluating the survival probability. Conditional 

survival probabilities of this form can then be used in combination with the observed event 

times and censoring indicators for each individual, taken over the interval (𝑡𝐿 , 𝑡𝐿 + Δ𝑡), to 

calculate a time-dependent AUC measure (Rizopoulos, 2012b).  

The tilde on the individual-level parameters �̃�𝑖 is used to denote that these parameters differ 

from those obtained from fitting the model to a sample of training data 𝒟 = {𝑇𝑖, 𝑑𝑖, 𝒚𝑖; 𝑖 =

1, … , 𝑁}. Specifically, new individual-level parameters �̃�𝑖 need to be drawn from a 
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distribution of the form 𝑝(�̃�𝑖 ∣ �̃�𝑖 , 𝜽, 𝑇𝑖
∗ > 𝑡𝐿) where �̃�𝑖 = {𝑦𝑖(𝑡𝑖𝑗); 𝑗 = 1,… , 𝑛𝑖 , 0 ≤ 𝑡𝑖𝑗 ≤

𝑡𝐿} denotes a collection of “new” longitudinal biomarker measurements for some individual 

𝑖 taken prior to the landmark time 𝑡𝐿. The population-level parameters 𝜽 are obtained from 

the joint posterior distribution conditional on the training data, that is, 𝑝(𝜽, 𝒃𝑖 ∣ 𝒟). 

Predictions that require these new individual-specific parameters �̃�𝑖 are encountered in two 

situations. First, when one wishes to predict for a new individual who was not included in 

our training data at all. Second, when one wishes to predict for an individual who was in 

our original training, but wants to condition on a restricted subset of their longitudinal 

biomarker data (for example, the biomarker data observed prior to the landmark time 𝑡𝐿). 

In the joint modelling literature, predictions obtained conditional on these new individual-

level parameters �̃�𝑖 are often referred to as dynamic predictions. This is because they are 

conditional on a set of “new” data for individual 𝑖 and can therefore be dynamically updated 

as additional biomarker measurements become available or, in the context of assessing 

predictive accuracy, if we were to change our landmark time 𝑡𝐿. Dynamic predictions have 

been discussed by several authors (Taylor et al., 2013; Rizopoulos, 2011, 2012b; Desmée 

et al., 2017a; Blanche et al., 2015; Proust-Lima and Taylor, 2009; Proust-Lima et al., 2014). 

A method similar to that discussed by Rizopoulos (2011, 2012b) was implemented in the 

rstanarm package discussed in Chapter 5. 

The framework for dynamic predictions under joint models can be extended to the situation 

in which there are multiple clustering factors. In the paper in Chapter 6, dynamic 

predictions were generated under a joint model with multiple clustering factors and used 

for calculating the time-dependent AUC measure. The framework for those predictions was 

not formally described in the paper, but will be described in detail as part of a future 

publication. In brief, dynamic predictions under a joint model with multiple clustering 

factors can be generated as follows. Suppose longitudinal biomarker measurements 𝑦𝑖𝑗𝑘 =

𝑦𝑖𝑗(𝑡𝑖𝑗𝑘) are observed at a set of time points 𝑘 = 1,… , 𝐾𝑖𝑗 for unit 𝑗 (𝑗 = 1,… , 𝐽𝑖) clustered 

within individual 𝑖 (𝑖 = 1,… ,𝑁). Note that this is the same notation used in the paper 

presented in Chapter 6. Given a sample of training data 𝒟 = {𝑇𝑖, 𝑑𝑖 , 𝒚𝑖𝑗𝑘; 𝑖 = 1,… ,𝑁, 𝑗 =

1, … , 𝐽𝑖, 𝑘 = 1,… , 𝐾𝑖𝑗}, a joint model can be estimated using the framework described in 

Chapter 6 and, accordingly, estimates of the parameters can be obtained from the joint 

posterior distribution 𝑝(𝜽, 𝒃𝑖, 𝒖𝑖𝑗 ∣ 𝒟) where 𝜽 denotes the population-level parameters, 𝒃𝑖 
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denotes the individual-specific parameters for individual 𝑖, and 𝒖𝑖𝑗 denotes the cluster-

specific parameters for unit 𝑗 clustered within individual 𝑖. With regard to dynamic 

predictions of the time-to-event outcome, our goal is to estimate a survival probability for 

individual 𝑖, that is  

 𝑆𝑖(𝑡𝐿 + Δ𝑡 | �̃�𝑖, �̃�𝑖𝑗, 𝜽, 𝑇𝑖
∗ > 𝑡𝐿) = 𝑃(𝑇𝑖

∗ > 𝑡𝐿 + Δ𝑡 ∣  �̃�𝑖, �̃�𝑖𝑗, 𝜽, 𝑇𝑖
∗ > 𝑡𝐿)  (55) 

where 𝑝(�̃�𝑖, �̃�𝑖𝑗 ∣ �̃�𝑖, 𝜽, 𝑇𝑖
∗ > 𝑡𝐿; 𝑗 = 1,… . , 𝐽𝑖) denotes the joint distribution of the new 

individual-specific and cluster-specific parameters for individual 𝑖 conditional on a set of 

“new” data for that individual, denoted �̃�𝑖 = {𝑦𝑖𝑗(𝑡𝑖𝑗𝑘); 𝑗 = 1,… , 𝐽𝑖 , 𝑘 = 1, … , 𝐾𝑖𝑗, 0 ≤

𝑡𝑖𝑗𝑘 ≤ 𝑡𝐿}.  

Under an assumption that �̃�𝑖 and �̃�𝑖𝑗 are uncorrelated, it is straightforward to obtain 

estimates for these new parameters using the approach of Taylor et al. (2013) or Rizopoulos 

(2011, 2012b). Moreover, it is evident that �̃�𝑖 contains sufficient information about 

individual 𝑖 and the lower-level clusters within that individual to draw the estimates of both 

�̃�𝑖 and �̃�𝑖𝑗. However, suppose that the additional clustering factor (that is, the clustering 

factor that is not the individual) occurs at a level above the individual; for example, if 

individuals were clustered within hospitals. In that setting, there may not be sufficient 

information to draw both the new individual-specific and cluster-specific parameters 

conditional on new data observed for individual 𝑖 alone. For instance, suppose we observe 

new data for an individual who was not in our training data and who comes from a new 

hospital that was not in our training data either. The data for this new individual will not 

provide sufficient information on its own to obtain estimates for the hospital-specific 

parameters, which are required to generate dynamic predictions for the new individual. 

Consequently, a reasonable approach may be to draw the individual-specific parameters for 

the new individual, conditional on their data, but to marginalise over the distribution of 

hospital-specific parameters. These ideas will be explored as part of future work. 

7.2.6 Limitations and future developments for rstanarm 

7.2.6.1 Delayed entry 

The various formulations for the joint models described in Chapters 2 through 6 all assumed 

that individuals are at risk from baseline, i.e. 𝑡 = 0. However, consider the situation in 

which some individuals do not have any observed biomarker measurements. That is, they 
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are included in our sample but they experience the event (or are censored) prior to any 

longitudinal biomarker measurements being observed. If we exclude these individuals from 

the likelihood function for the joint model (i.e. they are not used in the model estimation), 

then we are effectively enforcing a constraint that individuals are not at-risk of the event 

until the time of their first longitudinal biomarker measurement.  

Under the standard joint model likelihood, excluding individuals without any biomarker 

information induces a negative bias (i.e. an underestimate) in the estimated baseline hazard. 

This is because the subset of individuals used in the model estimation are a so-called 

“survivor” subset of the full sample of all individuals; the longer an individual remains 

event-free, then the greater their probability of having at least one longitudinal 

measurement observed and therefore being included in the joint likelihood. The magnitude 

of the bias will likely depend on the frequency of the longitudinal biomarker measurements; 

in situations with sparse measurements of the biomarker, the bias in the estimated baseline 

hazard will be greater. Importantly, this survival advantage will occur even if the visiting 

process (i.e. the timing of the biomarker measurements) is unrelated to the value of the 

unobserved biomarker measurements or the event time, an assumption discussed in Section 

2.3.5.2. However, it is noteworthy that this bias will not occur in the common situation 

whereby all individuals have a baseline biomarker measurement, since all individuals will 

be used in the estimation (assuming there are no other reasons for exclusions). 

The issue described here is, effectively, one of delayed entry. Delayed entry can be defined 

as the situation in which an individual is not at-risk of the event until some post-baseline 

time, i.e. 𝑡 > 0. Although individuals may in fact be at risk of the event from time zero, our 

exclusion criteria when fitting the model effectively enforces the presence of delayed entry, 

whereby the entry time for an individual is the time of their first biomarker measurement. 

Crowther et al. (2016) described the formulation and estimation of a shared parameter joint 

model incorporating delayed entry. The likelihood function for individual 𝑖 can be written 

as  

 𝐿𝑖 =
∫(∏ 𝑝(𝑦𝑖𝑗  | 𝒃𝑖, 𝜽)

𝑛𝑖
𝑗=1 )𝑝(𝑇𝑖 , 𝑑𝑖 | 𝒃𝑖, 𝜽) 𝑝(𝒃𝑖  | 𝜽) 𝑑𝒃𝑖

∫𝑆𝑖(𝑇0𝑖 | 𝒃𝑖 , 𝜽) 𝑝(𝒃𝑖 | 𝜽) 𝑑𝒃𝑖
 (56) 

where 
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 𝑆𝑖(𝑇0𝑖 | 𝒃𝑖, 𝜽) = exp(−∫ ℎ𝑖(𝑠 | 𝒃𝑖, 𝜽)
𝑇0𝑖

0

𝑑𝑠) (57) 

is the survival probability at the entry time for individual 𝑖 (i.e. the time at which individual 

𝑖 became at-risk). This likelihood function correctly adjusts for the fact that individual 𝑖 is 

not at-risk of the event between times 0 and 𝑇0𝑖. 

It is common for most, if not all, joint modelling software to require individuals to have at 

least one biomarker measurement in order to be included in the model estimation. This is 

also true for the rstanarm package described in Chapter 5. In practice, this means the user 

must exclude any individuals who experience the event before a biomarker measurement 

is observed. It is therefore necessary for the software to incorporate delayed entry in the 

likelihood function underpinning the estimation of the joint model, otherwise, the resulting 

estimates of the baseline hazard will be biased in situations where not all individuals have 

a baseline biomarker measurement. The rstanarm package does not currently support 

delayed entry. This became evident during the simulation study discussed in Chapter 5. In 

early simulations, a negative bias in the estimated baseline hazard was observed. The joint 

longitudinal and time-to-event data being used in the simulation study was initially 

generated using biomarker measurement times that were uniformly distributed between 

zero and the maximum follow-up time. This meant that some individuals who were in the 

simulated data, but who experienced the event prior to the timing of their first longitudinal 

measurement, were excluded from the model estimation. This led to the bias discussed 

above. In the simulation study, this was resolved by ensuring that every individual in the 

simulated data had at least a baseline biomarker measurement. However, in practice, this is 

not always the case. For example, in a study using a registry-based dataset, baseline might 

be defined as the date of diagnosis of a disease, but the timing of the earliest biomarker 

measurement may not coincide with the date of diagnosis. Therefore, a more general 

solution is required. Specifically, in a future release of rstanarm it will be necessary to 

incorporate delayed entry in the likelihood function using the form specified in equation 

(56). 

7.2.6.2 Recurrent events 

Another important future development for the joint modelling functionality in rstanarm is 

to incorporate recurrent events. There is currently limited software for joint longitudinal 

and time-to-event models that incorporate recurrent event processes (the notable exception 
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being the frailtypack (Król et al., 2017; Rondeau et al., 2012) R package). Nonetheless, 

there is significant scope for the wider uptake of these models. For example, shared frailty 

models for terminating and recurrent events have been identified as a suitable alternative 

to the suboptimal analysis approaches currently used in clinical trials in intensive care 

(Colantuoni et al., 2016). Therefore, incorporating shared frailty models for terminating 

and recurrent events is an important avenue for future development in rstanarm. 

7.2.6.3 Model diagnostics 

The other feature that will be incorporated in the near future will be a wider range of 

functions for assessing the accuracy of predictions of event risk. Currently, the fit of the 

joint model in rstanarm can be assessed using approximate leave-one-out cross-validation 

measures (Vehtari et al., 2017). Under leave-one-out cross-validation it must be determined 

what a unit of observation is (i.e. what “one” are we leaving out?). Currently, under a joint 

model, the rstanarm package treats an individual as the unit of observation when 

calculating the approximate leave-one-out cross-validation measures to assess model fit. 

However, these provide a measure of the overall fit of the joint model based on the 

predictive density for both the longitudinal and time-to-event outcomes. In the context of 

risk prediction, one may be more interested in assessing the accuracy of the event submodel 

predictions in particular (i.e. focus on the model performance with regard to the time-to-

event outcome alone). Therefore, in a future release of rstanarm, measures of predictive 

accuracy, for example, time-dependent measures of model discrimination (Rizopoulos, 

2011) will also be added. 

7.2.6.4 Simulation study to compare joint modelling software 

In Section 5.4 of the thesis a qualitative comparison of software for fitting multivariate joint 

models was presented. This included a summary table outlining the features of each of the 

software packages. However, a quantitative comparison was not made. Therefore, as part 

of future work, a simulation study comparing the various software packages will be 

undertaken. The simulation study will assess estimation properties such as bias and 

coverage, as well as investigating computational issues such as success at convergence and 

computation time. 
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 Conclusions 

This thesis provides an important contribution to several areas of joint modelling research, 

including their development, implementation and application. The publications presented 

in Chapters 3 and 4 demonstrate how novel joint modelling approaches can be applied to 

research studies in epidemiological, public health, or clinical medicine settings. The 

publications presented in Chapters 5 and 6 describe new methods and software that can 

help facilitate the wider uptake of joint modelling approaches in health research. Moreover, 

Chapters 5 and 6 provide a basis for ongoing developments and contributions to research 

in the area of joint modelling. 
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Appendix A. Supplementary materials for Chapter 3 paper 

This appendix herein contains the supplementary materials for the following paper that was 

presented in Chapter 3: 

Brilleman SL, Wolfe R, Moreno-Betancur M, Sales AE, Langa KM, Li Y, Daugherty 

Biddison EL, Rubinson L, Iwashyna TJ. Associations between community-level disaster 

exposure and individual-level changes in disability and risk of death for older 

Americans. Social Science & Medicine. 2017;173:118-125. 
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Supplementary material for: “Associations between community-level 

disaster exposure and individual-level changes in disability and risk of 

death for older Americans” 

Samuel L Brilleman, Rory Wolfe, Margarita Moreno-Betancur, Anne Sales, Kenneth M Langa, 

Yun Li, Elizabeth Daugherty Biddison, Lewis Rubinson, Theodore J Iwashyna 

1. Model estimation 

Software. For fitting the joint models we used the JMbayes package (1) in R version 3.2.2 (2). The 

JMbayes package fits joint models under a Bayesian framework using a Metropolis-based Markov 

chain Monte Carlo (MCMC) algorithm. Since the dataset we were working with was relatively large 

(𝑁 = 17,559 individuals) the amount of computer RAM required to fit the models exceeded what 

was available on any local machine we had access to (approximately 12GB of RAM was required 

to fit each joint model). We chose, therefore, to fit the joint models using a UNIX-based computer 

cluster. The main joint model used in the analysis (with a current value association structure) took 

approximately 12 hours to fit based on a draw of 26,000 MCMC iterations (which included the 

adaptation and burn-in iterations). 

Prior distributions. For each of the fixed regression coefficients (𝜷, 𝜸) and the association 

parameter (𝛼1), vague univariate normal prior distributions were used. For the variance-covariance 

matrix of the random effects (𝚺), an inverse-Wishart prior distribution was used. For the scale 

parameter for the negative binomial distribution (𝜙) an inverse Gamma distribution was used. These 

were the default prior distributions provided by the JMbayes package (1). 

Sampling. For each joint model we obtained 26,000 MCMC iterations, drawn from one “chain” 

using a single set of initial values. The initial values are obtained by fitting separate longitudinal 

and survival models prior to fitting the joint model. The 26,000 MCMC iterations included 3000 

iterations for each of the adaptation and “burn-in” phases. Furthermore, to reduce autocorrelation 

between parameter estimates obtained from subsequent MCMC iterations the final set of 20,000 

MCMC iterations is thinned down to just 2,000 by retaining every 10th iteration. This “thinning” 

process helps to ensure the retained set of MCMC samples (i.e., those which are used for inference) 

represent a random sample from the joint posterior distribution for the model. 

Density for the longitudinal submodel. The JMbayes package requires the user to explicitly specify 

the density for the longitudinal submodel. As described in our main manuscript, the longitudinal 

submodel in this study consisted of a generalised linear mixed model with log link function and 

negative binomial error distribution. The density for the longitudinal submodel, for a single 

observation 𝑦𝑖𝑗, is specified as 

𝑝(𝑦𝑖𝑗| μ𝑖𝑗 , ϕ) =  (
𝑦𝑖𝑗 + ϕ− 1

𝑦𝑖𝑗
)(

μ𝑖𝑗

μ𝑖𝑗 + ϕ
)

𝑦𝑖𝑗

(
ϕ

μ𝑖𝑗 + ϕ
)

ϕ

 

where μ𝑖𝑗 = 𝜇𝑖(𝑡𝑖𝑗) and 𝜙 is the negative binomial scale parameter (both parameters are specified 

in equation (1) of the main manuscript). 
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2. Characteristics associated with disaster rates 

Of the 17,559 individuals included in the analysis there were 16,075 (92%) individuals who 

experienced at least one disaster during the study period. Table S1 shows the number of individuals 

experiencing each type of disaster at least once, as well as the total number of person-disaster events 

for each disaster type. Storm, hurricane and snow were the most widely experienced disaster types. 

There appeared to be reasonable correspondence between the percentage of individuals 

experiencing a specific type of disaster and the prevalence of that disaster type overall. In other 

words, there did not appear to be any disaster type which was frequently and repeatedly experienced 

by only a small number of individuals. 

Poisson regression models were also used to assess which individual-level baseline characteristics 

were associated with individual-level disaster rates. We considered both the rates of overall 

disasters (i.e., any disaster type) as well as fitting a separate regression model for the rates of each 

disaster type. The rate ratios from the estimated models are shown in Tables S2 and S3. 

3. Results from joint models with alternative association structures 

In the main manuscript we provided the results from a joint model for longitudinal disability score 

measurements and time-to-death. The shared parameter joint model defined in the main manuscript 

was based on a “current value” association structure. In equation (3) in the main manuscript we 

defined the survival submodel as  

ℎ𝑖(𝑡) = ℎ0(𝑡) exp(𝒘𝒊
′(𝑡)𝜸 + 𝛼1𝜂𝑖(𝑡)) 

where the fixed coefficient 𝛼1 is referred to as the “current value” association parameter, since it 

measures the strength of association between the current expected value of the log disability score 

at time 𝑡 and the log hazard of death at time 𝑡. 

In this section we present the results for joint models based on two alternative association structures. 

The first is a “current value and slope” association structure, where the survival submodel takes the 

form 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp(𝒘𝒊
′(𝑡)𝜸 + 𝛼2𝜂𝑖(𝑡) + 𝛼3𝜂𝑖

′(𝑡)) 

Under this joint model the hazard of death at time 𝑡 is assumed to be associated with the current 

expected value of the log disability score at time 𝑡 as well as the current rate of change (slope) in 

the log disability score. The second is a current value association structure with an current value by 

age category interaction term, where the survival submodel takes the form 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp (𝒘𝒊
′(𝑡)𝜸 + 𝛼4𝜂𝑖(𝑡) +∑ 𝛼𝑎(𝐴𝑖𝑎𝜂𝑖(𝑡))

𝒂
) 

where the 𝐴𝑖𝑎 are the dummy variables for the age categories (defined in the main manuscript). The 

specification of the longitudinal submodel, as well as the specification of ℎ0(𝑡) and 𝒘𝒊(𝑡), are the 

same as described for the joint model in the main manuscript. 

Tables S4 and S5, respectively, show the estimated disability score ratios and hazard ratios from 

the fitted joint models; for ease of comparison the joint model from the main manuscript is also 
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included. From the joint model with the current value by age category interaction we observed that 

the magnitude of the association between disability and death decreased slightly with age. For 

example, a doubling in the estimated disability score was associated with a 39%1 increase in the 

risk of death for the youngest age category but only a 28%2 increase in the risk of death for the 

oldest age category.  

There was also some evidence that the rate of change (slope) in the log disability score was 

associated with the risk of death. From the joint model with the current value and slope 

parameterisation (Table S2) we observed that an individual’s estimated risk of death is 40% (HR = 

1.403, 95% CrI: 0.95 to 2.04) higher if their rate of increase in disability is twice as fast, for given 

fixed values of the level of disability, baseline covariates and disaster exposure. However, the 

credible interval surrounding this estimate was relatively wide which may suggest that the current 

level of disability is in fact a more important predictor of the risk of death rather than the rate of 

change in disability. 

4. Sensitivity analysis only including individuals with “low” baseline disability 

Following a reviewer’s suggestion, we conducted a sensitivity analysis in which we only included 

those individuals with a baseline disability score of 0, 1 or 2. The parameter estimates from the 

model fitted to this subgroup are shown in Tables S5 and S6. The point estimate for the association 

between disaster exposure and disability was positive in this subgroup (that is, it suggested that the 

presence of a disaster within the previous 2 years was associated with slightly higher mean levels 

of disability), however, the 95% credible interval for this estimate included a value of 1 

corresponding to no association (disability score ratio = 1.04, 95% CI: 0.98 to 1.10). The hazard 

ratio estimate for the association between disaster exposure and risk of mortality remained almost 

unchanged; that is it was similar in both this subgroup and the overall sample. 
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1 Calculated as exp {0.693 × log(1.61)} 
2 Calculated as exp {0.693 × (log(1.61) + log (0.89))} 
3 Calculated as exp {0.693 × log(1.62)} 
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Table S1. Disaster rate ratios (and 95% confidence intervals) from Poisson regression models for the number of disasters experienced by each individual 

during follow up. The models are adjusted for the total follow up time (in years) for each individual. Separate models were fit for the overall disaster rate 

(i.e., any disaster) and for each disaster type. The table presented here includes: any disaster; storm; hurricane; snow; and fire. 

  Any disaster type Storm Hurricane Snow Fire 

Constant 0.44 (0.42 to 0.45) 0.21 (0.20 to 0.22) 0.09 (0.09 to 0.10) 0.08 (0.08 to 0.09) 0.03 (0.02 to 0.03) 

Age category (ref: ≥50, <60y)      

     ≥60, <65y 1.02 (0.99 to 1.04) 1.02 (0.98 to 1.05) 1.04 (0.99 to 1.09) 0.98 (0.92 to 1.04) 1.05 (0.96 to 1.15) 

     ≥65, <70y 1.05 (1.02 to 1.07) 1.06 (1.02 to 1.09) 1.08 (1.03 to 1.13) 1.00 (0.94 to 1.06) 1.02 (0.93 to 1.12) 

     ≥70, <75y 1.02 (0.99 to 1.04) 0.96 (0.93 to 1.00) 1.04 (0.99 to 1.10) 1.10 (1.03 to 1.17) 1.14 (1.03 to 1.27) 

     ≥75, <80y 1.06 (1.03 to 1.09) 1.01 (0.97 to 1.05) 1.12 (1.06 to 1.19) 1.09 (1.01 to 1.17) 1.20 (1.07 to 1.33) 

     ≥80, <85y 1.15 (1.11 to 1.18) 1.04 (0.99 to 1.09) 1.20 (1.12 to 1.28) 1.31 (1.21 to 1.42) 1.40 (1.24 to 1.58) 

     ≥85, <90y 1.21 (1.16 to 1.26) 1.03 (0.96 to 1.10) 1.23 (1.14 to 1.34) 1.61 (1.46 to 1.77) 1.45 (1.24 to 1.69) 

Gender (ref: Male)      

     Female 0.98 (0.96 to 0.99) 0.99 (0.97 to 1.01) 0.96 (0.93 to 0.99) 0.98 (0.94 to 1.02) 0.96 (0.90 to 1.02) 

Race (ref: White, Caucasian)      

     Black, African American 0.90 (0.88 to 0.92) 0.80 (0.77 to 0.83) 0.99 (0.95 to 1.04) 0.95 (0.89 to 1.01) 0.85 (0.77 to 0.94) 

     Other 0.90 (0.86 to 0.94) 0.78 (0.72 to 0.83) 0.90 (0.83 to 0.98) 0.77 (0.68 to 0.87) 2.02 (1.79 to 2.27) 

Wealth category (ref: Decile 1, most wealth)     

     Decile 2 1.00 (0.97 to 1.04) 1.03 (0.98 to 1.08) 0.98 (0.91 to 1.06) 0.99 (0.92 to 1.07) 0.99 (0.87 to 1.13) 

     Decile 3 1.03 (1.00 to 1.07) 1.08 (1.03 to 1.13) 1.02 (0.94 to 1.09) 0.99 (0.91 to 1.07) 1.11 (0.98 to 1.27) 

     Decile 4 1.00 (0.97 to 1.04) 0.99 (0.94 to 1.04) 1.06 (0.98 to 1.14) 1.04 (0.97 to 1.13) 1.01 (0.88 to 1.15) 

     Decile 5 1.00 (0.97 to 1.04) 1.02 (0.97 to 1.07) 1.08 (1.01 to 1.16) 0.96 (0.89 to 1.04) 1.00 (0.88 to 1.15) 

     Decile 6 1.01 (0.97 to 1.04) 1.03 (0.98 to 1.08) 1.10 (1.03 to 1.19) 0.90 (0.83 to 0.98) 1.00 (0.87 to 1.14) 

     Decile 7 1.02 (0.98 to 1.05) 1.00 (0.95 to 1.05) 1.39 (1.30 to 1.49) 0.73 (0.67 to 0.80) 0.88 (0.77 to 1.01) 

     Decile 8 0.98 (0.95 to 1.02) 0.93 (0.88 to 0.98) 1.49 (1.39 to 1.60) 0.65 (0.59 to 0.71) 0.86 (0.75 to 0.99) 

     Decile 9 1.01 (0.98 to 1.05) 0.98 (0.93 to 1.03) 1.47 (1.37 to 1.58) 0.67 (0.61 to 0.73) 1.02 (0.89 to 1.17) 

     Decile 10, least wealth 1.02 (0.98 to 1.06) 0.90 (0.85 to 0.95) 1.38 (1.28 to 1.49) 0.75 (0.68 to 0.82) 1.43 (1.26 to 1.63) 

Abbreviations. “ref”: reference category.  
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Table S2. Disaster rate ratios (and 95% confidence intervals) from Poisson regression models for the number of disasters experienced by each individual 

during follow up. The models are adjusted for the total follow up time (in years) for each individual. Separate models were fit for the overall disaster rate 

(i.e., any disaster) and for each disaster type. The table presented here includes: flood; tornado; earthquake; and other. 

  Flood Tornado Earthquake Other 

Constant 0.01 (0.01 to 0.02) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.01) 0.01 (0.01 to 0.01) 

Age category (ref: ≥50, <60y)     

     ≥60, <65y 1.11 (0.95 to 1.30) 0.89 (0.71 to 1.11) 0.82 (0.56 to 1.19) 0.99 (0.87 to 1.14) 

     ≥65, <70y 1.09 (0.92 to 1.28) 1.16 (0.93 to 1.44) 0.75 (0.51 to 1.12) 0.98 (0.85 to 1.13) 

     ≥70, <75y 0.91 (0.76 to 1.10) 0.93 (0.72 to 1.20) 0.86 (0.57 to 1.31) 1.04 (0.89 to 1.22) 

     ≥75, <80y 0.87 (0.71 to 1.07) 0.89 (0.67 to 1.19) 1.44 (0.98 to 2.11) 1.21 (1.03 to 1.42) 

     ≥80, <85y 0.88 (0.69 to 1.13) 0.69 (0.48 to 0.99) 1.12 (0.68 to 1.85) 1.38 (1.16 to 1.65) 

     ≥85, <90y 0.92 (0.65 to 1.29) 0.65 (0.39 to 1.09) 1.41 (0.74 to 2.69) 1.64 (1.33 to 2.04) 

Gender (ref: Male)     

     Female 0.92 (0.82 to 1.02) 1.00 (0.85 to 1.17) 0.97 (0.76 to 1.24) 0.99 (0.90 to 1.08) 

Race (ref: White or Caucasian)     

     Black or African American 0.21 (0.15 to 0.30) 1.72 (1.42 to 2.10) 0.23 (0.10 to 0.53) 1.77 (1.57 to 1.99) 

     Other 0.45 (0.29 to 0.69) 0.71 (0.44 to 1.16) 0.37 (0.12 to 1.16) 1.31 (1.04 to 1.63) 

Wealth category (ref: Decile 1, most wealth)     

     Decile 2 0.97 (0.79 to 1.19) 0.92 (0.63 to 1.35) 0.84 (0.57 to 1.23) 0.93 (0.76 to 1.14) 

     Decile 3 0.87 (0.71 to 1.08) 1.08 (0.75 to 1.57) 0.51 (0.33 to 0.80) 0.78 (0.64 to 0.97) 

     Decile 4 0.78 (0.63 to 0.98) 0.95 (0.65 to 1.40) 0.62 (0.41 to 0.95) 0.87 (0.71 to 1.06) 

     Decile 5 0.71 (0.56 to 0.89) 1.28 (0.89 to 1.83) 0.46 (0.29 to 0.74) 0.89 (0.73 to 1.09) 

     Decile 6 0.85 (0.68 to 1.06) 1.41 (0.99 to 2.00) 0.28 (0.15 to 0.50) 0.92 (0.75 to 1.13) 

     Decile 7 0.80 (0.64 to 1.01) 1.43 (1.01 to 2.03) 0.27 (0.15 to 0.49) 0.95 (0.78 to 1.16) 

     Decile 8 0.80 (0.63 to 1.02) 1.22 (0.85 to 1.76) 0.38 (0.22 to 0.66) 0.83 (0.67 to 1.02) 

     Decile 9 0.79 (0.62 to 1.00) 1.23 (0.86 to 1.77) 0.30 (0.16 to 0.55) 0.79 (0.64 to 0.97) 

     Decile 10, least wealth 0.46 (0.33 to 0.63) 1.63 (1.14 to 2.32) 0.25 (0.12 to 0.52) 1.33 (1.10 to 1.61) 

Abbreviations. “ref”: reference category.  
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Table S3. Disability score ratios from the longitudinal submodel, for joint models with various association structures. Estimates presented are posterior 

means and associated 95% credible intervals. 

  Current value parameterisation 

Current value and slope 

parameterisation 

Current value by age category 

interaction 

Constant 0.02 (0.02 to 0.03) 0.02 (0.02 to 0.03) 0.02 (0.02 to 0.03) 

Time (years) 1.03 (1.01 to 1.04) 1.02 (1.01 to 1.04) 1.02 (1.01 to 1.04) 

Age category (ref: ≥50, <60y)    

     ≥60, <65y 0.92 (0.82 to 1.03) 0.92 (0.81 to 1.03) 0.92 (0.82 to 1.04) 

     ≥65, <70y 1.19 (1.06 to 1.33) 1.18 (1.05 to 1.33) 1.18 (1.05 to 1.33) 

     ≥70, <75y 1.72 (1.51 to 1.95) 1.70 (1.50 to 1.94) 1.71 (1.49 to 1.95) 

     ≥75, <80y 3.04 (2.66 to 3.48) 2.99 (2.63 to 3.39) 3.03 (2.63 to 3.53) 

     ≥80, <85y 5.70 (4.96 to 6.64) 5.62 (4.89 to 6.51) 5.69 (4.94 to 6.62) 

     ≥85, <90y 9.75 (8.12 to 11.79) 9.51 (7.96 to 11.34) 9.57 (7.88 to 11.63) 

Age category * time interaction    

     ≥60, <65y 1.05 (1.03 to 1.06) 1.05 (1.03 to 1.06) 1.05 (1.03 to 1.07) 

     ≥65, <70y 1.10 (1.08 to 1.11) 1.10 (1.08 to 1.12) 1.10 (1.08 to 1.12) 

     ≥70, <75y 1.18 (1.16 to 1.20) 1.18 (1.16 to 1.20) 1.18 (1.15 to 1.20) 

     ≥75, <80y 1.22 (1.20 to 1.24) 1.23 (1.21 to 1.26) 1.22 (1.20 to 1.25) 

     ≥80, <85y 1.27 (1.25 to 1.30) 1.29 (1.26 to 1.32) 1.28 (1.25 to 1.31) 

     ≥85, <90y 1.27 (1.24 to 1.30) 1.28 (1.25 to 1.32) 1.27 (1.23 to 1.31) 

Gender (ref: Male)    

     Female 1.02 (0.95 to 1.09) 1.02 (0.95 to 1.09) 1.01 (0.94 to 1.08) 

Race (ref: White or Caucasian)    

     Black or African American 1.30 (1.17 to 1.44) 1.30 (1.17 to 1.45) 1.30 (1.17 to 1.45) 

     Other 1.15 (0.95 to 1.37) 1.15 (0.95 to 1.39) 1.15 (0.95 to 1.38) 

Wealth category (ref: Decile 1, most wealth)    

     Decile 2 1.10 (0.94 to 1.30) 1.10 (0.92 to 1.29) 1.11 (0.95 to 1.30) 

     Decile 3 1.27 (1.08 to 1.49) 1.27 (1.08 to 1.48) 1.27 (1.08 to 1.48) 

     Decile 4 1.74 (1.49 to 2.05) 1.74 (1.49 to 2.03) 1.75 (1.50 to 2.06) 
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     Decile 5 1.86 (1.61 to 2.17) 1.87 (1.59 to 2.19) 1.87 (1.61 to 2.19) 

     Decile 6 2.23 (1.91 to 2.60) 2.25 (1.91 to 2.62) 2.25 (1.93 to 2.60) 

     Decile 7 3.06 (2.60 to 3.57) 3.07 (2.64 to 3.60) 3.05 (2.61 to 3.58) 

     Decile 8 3.71 (3.16 to 4.32) 3.70 (3.15 to 4.33) 3.72 (3.19 to 4.37) 

     Decile 9 5.28 (4.46 to 6.18) 5.31 (4.54 to 6.23) 5.31 (4.57 to 6.21) 

     Decile 10, least wealth 9.52 (8.12 to 11.25) 9.60 (8.22 to 11.24) 9.60 (8.15 to 11.34) 

Disaster exposure    

     Within previous 2 years 0.98 (0.93 to 1.03) 0.99 (0.92 to 1.04) 0.97 (0.90 to 1.02) 

Abbreviations. “ref”: reference category.  
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Table S4. Hazard ratios from the survival submodel, for joint models with various association structures. Estimates presented are posterior means and 

associated 95% credible intervals. 

  Current value parameterisation 

Current value and slope 

parameterisation 

Current value by age category 

interaction 

Age category (ref: ≥50, <60y)   
 

 

     ≥60, <65y 2.40 (1.54 to 3.62) 2.54 (1.05 to 6.16) 2.58 (0.87 to 8.16) 

     ≥65, <70y 3.58 (2.52 to 5.33) 3.78 (1.58 to 7.40) 3.31 (1.03 to 10.54) 

     ≥70, <75y 3.80 (2.65 to 5.59) 4.11 (1.70 to 8.63) 3.73 (1.15 to 12.24) 

     ≥75, <80y 5.81 (4.12 to 8.54) 6.42 (2.62 to 13.92) 5.75 (1.96 to 14.74) 

     ≥80, <85y 7.88 (5.39 to 11.25) 7.76 (3.31 to 17.03) 7.62 (2.56 to 24.55) 

     ≥85, <90y 9.88 (6.65 to 14.78) 10.08 (3.81 to 23.71) 9.94 (3.20 to 26.49) 

Gender (ref: Male)    

     Female 0.60 (0.56 to 0.65) 0.61 (0.53 to 0.68) 0.62 (0.53 to 0.72) 

Race (ref: White or Caucasian)    

     Black or African American 0.90 (0.80 to 0.99) 0.90 (0.72 to 1.11) 0.89 (0.67 to 1.10) 

     Other 0.74 (0.61 to 0.92) 0.75 (0.46 to 1.15) 0.69 (0.37 to 1.06) 

Wealth trend across deciles    

     Linear trend (0 = Decile 1; 9 = Decile 10) 1.13 (1.07 to 1.18) 1.15 (1.01 to 1.28) 1.12 (0.97 to 1.27) 

Age category * wealth trend interaction    

     ≥60, <65y 0.93 (0.87 to 0.99) 0.92 (0.81 to 1.06) 0.92 (0.80 to 1.09) 

     ≥65, <70y 0.91 (0.86 to 0.96) 0.91 (0.81 to 1.03) 0.93 (0.81 to 1.09) 

     ≥70, <75y 0.93 (0.88 to 0.98) 0.91 (0.82 to 1.04) 0.93 (0.79 to 1.10) 

     ≥75, <80y 0.91 (0.86 to 0.96) 0.89 (0.78 to 1.01) 0.91 (0.80 to 1.08) 

     ≥80, <85y 0.89 (0.85 to 0.94) 0.89 (0.78 to 1.01) 0.91 (0.79 to 1.05) 

     ≥85, <90y 0.88 (0.83 to 0.93) 0.87 (0.76 to 1.00) 0.90 (0.77 to 1.05) 

Disaster exposure    

     Within previous 21 days 0.96 (0.75 to 1.21) 0.94 (0.56 to 1.43) 0.94 (0.54 to 1.54) 

     Within previous 2 years, but not 21 days 1.03 (0.96 to 1.11) 1.02 (0.87 to 1.18) 1.02 (0.88 to 1.16) 

Association parameters    
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     Current value 1.56 (1.45 to 1.65) 1.54 (1.41 to 1.66) 1.61 (1.15 to 2.32) 

     Current slope na 1.62 (0.93 to 2.81) na 

     Age category * current value interaction    

         ≥60, <65y na na 1.00 (0.63 to 1.47) 

         ≥65, <70y na na 0.96 (0.64 to 1.41) 

         ≥70, <75y na na 0.95 (0.57 to 1.45) 

         ≥75, <80y na na 0.96 (0.58 to 1.54) 

         ≥80, <85y na na 0.94 (0.60 to 1.35) 

         ≥85, <90y na na 0.89 (0.56 to 1.40) 

Abbreviations. “ref”: reference category. “na”: not applicable.
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Table S5. Disability score ratios from the longitudinal submodel of a joint model fit to the subgroup 

of participants with a baseline disability score of 0, 1 or 2. Estimates presented are posterior means 

and associated 95% credible intervals. 

  

Disability score ratio 

(95% credible interval) 

Constant 0.02 (0.02 to 0.02) 

Time (years) 1.03 (1.02 to 1.04) 

Age category (ref: ≥50, <60y)  

     ≥60, <65y 0.91 (0.82 to 1.01) 

     ≥65, <70y 1.06 (0.95 to 1.17) 

     ≥70, <75y 1.48 (1.32 to 1.65) 

     ≥75, <80y 2.35 (2.09 to 2.65) 

     ≥80, <85y 3.64 (3.18 to 4.16) 

     ≥85, <90y 3.85 (3.23 to 4.62) 

Age category * time interaction  

     ≥60, <65y 1.05 (1.04 to 1.07) 

     ≥65, <70y 1.11 (1.10 to 1.13) 

     ≥70, <75y 1.20 (1.18 to 1.22) 

     ≥75, <80y 1.27 (1.24 to 1.29) 

     ≥80, <85y 1.37 (1.34 to 1.40) 

     ≥85, <90y 1.45 (1.41 to 1.49) 

Gender (ref: Male)  

     Female 0.99 (0.93 to 1.06) 

Race (ref: White or Caucasian)  

     Black or African American 1.24 (1.12 to 1.38) 

     Other 1.10 (0.92 to 1.31) 

Wealth category (ref: Decile 1, most wealth)  

     Decile 2 1.02 (0.88 to 1.18) 

     Decile 3 1.20 (1.04 to 1.38) 

     Decile 4 1.58 (1.37 to 1.82) 

     Decile 5 1.64 (1.41 to 1.89) 

     Decile 6 1.87 (1.61 to 2.16) 

     Decile 7 2.55 (2.22 to 2.94) 

     Decile 8 2.84 (2.44 to 3.28) 

     Decile 9 3.71 (3.21 to 4.28) 

     Decile 10, least wealth 5.26 (4.50 to 6.15) 

Disaster exposure  

     Within previous 2 years 1.04 (0.98 to 1.10) 

Abbreviations. “ref”: reference category.  
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Table S6. Hazard ratios from the survival submodel of a joint model fit to the subgroup of 

participants with a baseline disability score of 0, 1 or 2. Estimates presented are posterior means 

and associated 95% credible intervals. 

  

Hazard ratio 

(95% credible interval) 

Age category (ref: ≥50, <60y)  

     ≥60, <65y 2.14 (1.47 to 3.05) 

     ≥65, <70y 3.15 (2.27 to 4.45) 

     ≥70, <75y 3.29 (2.35 to 4.43) 

     ≥75, <80y 5.45 (3.82 to 7.61) 

     ≥80, <85y 6.92 (4.79 to 9.64) 

     ≥85, <90y 8.21 (5.69 to 12.16) 

Gender (ref: Male)  

     Female 0.59 (0.56 to 0.63) 

Race (ref: White or Caucasian)  

     Black or African American 0.89 (0.80 to 0.99) 

     Other 0.75 (0.60 to 0.93) 

Wealth trend across deciles  

     Linear trend (0 = Decile 1; 9 = Decile 10) 1.12 (1.07 to 1.17) 

Age category * wealth trend interaction  

     ≥60, <65y 0.94 (0.89 to 1.00) 

     ≥65, <70y 0.93 (0.88 to 0.98) 

     ≥70, <75y 0.95 (0.90 to 1.00) 

     ≥75, <80y 0.91 (0.86 to 0.97) 

     ≥80, <85y 0.90 (0.86 to 0.96) 

     ≥85, <90y 0.91 (0.85 to 0.97) 

Disaster exposure  

     Within previous 21 days 0.92 (0.72 to 1.17) 

     Within previous 2 years, but not 21 days 1.03 (0.96 to 1.10) 

Association parameters  

     Current value 1.53 (1.46 to 1.60) 

Abbreviations. “ref”: reference category. “na”: not applicable. 
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Appendix B. Supplementary materials for Chapter 4 paper 

This appendix herein contains the supplementary materials for the following paper that was 

presented in Chapter 4: 

Brilleman SL, Moreno-Betancur M, Polkinghorne KR, McDonald SP, Crowther MJ, 

Thomson J, Wolfe R. Longitudinal changes in body mass index and the competing 

outcomes of death and transplant in patients undergoing hemodialysis: a joint latent class 

mixed model approach. Submitted for publication. 
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Supplementary material for 

“Longitudinal changes in body mass index and competing outcomes of death 

and transplant in patients undergoing haemodialysis” 

Samuel L Brilleman, Margarita Moreno-Betancur, Kevan R. Polkinghorne,Stephen P. McDonald,  

Michael J. Crowther, Jim Thomson, Rory Wolfe 

 

1. Details related to patient exclusions 

Figure S1 provides a flowchart illustrating the derivation of the analysis sample. Of the 19,264 patients 

who initiated hemodialysis during the study period, we excluded the following: 536 patients who 

recovered kidney function, 879 patients with unknown height, race, or comorbidity status, 21 patients with 

extreme (<130 cm) baseline height, 1376 patients with an extreme (≥45 or <17.5 kg/m2) BMI 

measurement during follow up. Since there were some overlaps for these exclusion categories (e.g. a 

patient might have had a missing height measurement and have recovered kidney function) these 

exclusions meant there were 16,585 patients remaining, of which 16,414 patients had at least one BMI 

measurement recorded prior to death, transplant or censoring and were therefore included in the main 

analyses. 

2. Observed BMI trajectories 

Observed longitudinal BMI trajectories for a random sample of 25 patients are shown in Figure S2. 

3. Numbers of patients with BMI measurements in the 1st, 2nd, 3rd, 4th and 5th years 

In the main manuscript we report that the percentage of patients with 1, 2, 3, 4, and 5 BMI measurements 

respectively (prior to death, transplant or censoring) was 18%, 21%, 17%, 14% and 30%. In Table 1 of the 

main manuscript we also report the specific number of patients with 1, 2, 3, 4, and 5 BMI measurements 

respectively. Here we provide some additional information about the frequency of the BMI 

measurements: 

- Of the 12,449 patients who were still at risk of an event after 1 year of follow up, we found that 

12,325 (99.0%) patients had a BMI measurement during their first year. 

- Of the 9,196 patients who were still at risk of an event after 2 years of follow up, we found that 

9,140 (99.4%) patients had a BMI measurement during their second year. 

- Of the 6,588 patients who were still at risk of an event after 3 years of follow up, we found that 

6,540 (99.3%) patients had a BMI measurement during their third year. 

- Of the 4,511 patients who were still at risk of an event after 4 years of follow up, we found that 

4,484 (99.4%) patients had a BMI measurement during their fourth year. 

Of the 3,049 patients who were still at risk of an event after 5 years of follow up (i.e. those who were 

censored at the maximum follow up time), we found that 3,019 (99.0%) patients had a BMI measurement 

during their fifth year. 
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4. Computational details for the latent class joint model 

4.1. Overview 

The latent class joint model, defined in the main manuscript, was estimated using the ‘Jointlcmm’ 

command in the ‘lcmm’ R package [1–3]. Maximum likelihood estimates are obtained using a modified 

Marquardt algorithm (see the package documentation for details [2]). The package’s default setting 

enforces strict convergence criteria, which we did not alter (tolerance of 1E-4 for each of: parameter 

stability, log-likelihood stability, and stability of the first derivatives). We chose to use the default square 

transformation of the baseline hazard parameters (argument ‘logscale = FALSE’) to ensure positivity of 

the baseline hazard throughout the estimation process. 

Several possible extensions to the model were also explored, but often led to difficulties achieving 

convergence. Attempts were made to use a baseline hazard modelled with cubic M-splines (argument 

‘hazard = “splines”’), however, difficulties with convergence were encountered (even when using a small 

number of internal knots for the splines). Therefore, a simpler Weibull baseline hazard specification was 

used for the models in the main manuscript. We also encountered difficulties achieving convergence when 

the variance of the individual-level random effects was allowed to differ across latent classes.  

4.2. Example code 

In several supplementary files, we provide an example of the R code used to fit the latent class joint 

model. These files are named:  

- “example_code_default.R” 

- “example_code_gridsearch.R” 

- “example_code_randominits.R” 

The three files differ in their approach to starting / initial values for the parameters. The three approaches 

used for initial values are described in the next section. 

4.3. Initial values 

We found that we encountered difficulties with convergence unless reasonable initial values were used. In 

particular, our solution reported in the main manuscript was found using two strategies, described as 

follows. 

Strategy A: example code shown in the supplementary file “example_code_default.R”. 

A1. We first fit a model with the same structure as our intended latent class joint model, but with 

only one class (i.e. specifying the argument ‘ng = 1’ to the ‘Jointlcmm’ function in the lcmm R 

package). We denote this model: ‘initmod’. 

A2. We then use the parameter estimates from the one class model (‘initmod’) to generate initial 

values for the M-class model we wish to fit (where M is the number of desired classes). This is 

achieved by specifying the arguments ‘ng = M’ and ‘B = initmod’ to the ‘Jointlcmm’ function. 

We use a maximum of 200 iterations. We denote this model: ‘mod’. 
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A3. If the M-class model (‘mod’) converged, then we stop. Otherwise, if the M-class model 

(‘mod’) did not converge after 200 iterations then we do the following: 

A3.1. We extract the final parameter estimates from the M-class joint model that did not 

converge. 

A3.2. We then fit an M-class model for the longitudinal BMI data only (ignoring the 

death and transplant data) and we extract the final parameter estimates from that model. 

A3.3. We substitute the estimates from Step A3.2 into the vector of parameter estimates 

from Step A3.1 and then refit the model using those parameter estimates as starting values 

for a new attempt at fitting the M-class joint model. 

Strategy B: example code shown in the supplementary file “example_code_gridsearch.R”. Note that 

Strategy B is the same as Strategy A, except that a grid search is used in the second step.  

B1. Same as Step A1. 

B2. We then use the parameter estimates from the one class model (‘initmod’) to randomly 

generate 3 sets of initial values for M-class model, we then run each of these 3 models for a 

maximum of 50 iterations. This is achieved by using the ‘gridsearch’ function in the lcmm 

package, with arguments ‘rep = 3’ and ‘maxiter = 50’. We then take the model with the highest 

log-likelihood, and run that model until convergence or until the maximum number of iterations 

(200) is reached. Let us denote this model: ‘mod’. 

B3. Same as A3. 

We then confirmed that Strategy A and Strategy B led to the same solution. Note that in most cases the 

model in Step A2/B2 did not converge, and the parameter estimates from an M-class model with just the 

longitudinal BMI data was required to produce starting values for the M-class joint model (i.e. Steps A3.1 

through A3.3, or Steps B3.1 through B3.3, were required). 

Additional Strategy: In response to a reviewer’s suggestion, we then also ran the five-class joint model 

(i.e. our final model) with a variety of random initial values. Specifically, we used 27 randomly generated 

sets of initial values. The function to generate the initial values can be found in the supplementary file 

“example_code_randominits.R”. From these 27 models, we found the following: 

- 11 stopped abnormally (with no additional information provided by the lcmm package) 

- 13 models did not converge after 200 iterations 

- 3 models converged 

Of the models that converged, one provided a seemingly nonsensical solution. The two other models 

converged to a common solution that was very similar, but not identical, to the solution found using 

Strategy A and Strategy B.  

Compared with the final solution reported in the manuscript (found using Strategy A and Strategy B), the 

solution found with the random initial values had a slightly higher log-likelihood (-27324 vs -27434) and 
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slightly lower BIC value (55367 vs 55586). However, these differences are small relative to the decrease 

in BIC observed with adding additional latent classes; for example, the six-class solution reported in the 

manuscript had a BIC value of 54878. Moreover, the findings related to the predicted longitudinal 

trajectories and hazard functions (see Figure S3) were very similar to the results reported in the 

manuscript. 

Since multimodality is such a critical issue in latent class models, one ideally wants to use many sets of 

randomly selected initial values. This can provide reassurance (but not certainty) that the final solution 

corresponds to a global maximum. Ideally, many sets of randomly selected initial values would also be 

used for the models estimated along the model building / selection / comparison process. However, we 

found that such an endeavour is somewhat hampered in latent class joint models by their computational 

complexity and - in particular – issues with convergence and long computation times (see the next 

section). Nonetheless, it is worth noting that the computation times would be shorter if fitting these 

models to a smaller dataset (for example less individuals and/or less longitudinal measurements), which 

would allow a greater number of models to be estimated in a given time.  

4.4. Computation times  

Fitting the latent class joint models was time consuming. For example, for the five-class joint model using 

Strategy A for specifying the initial values, it took approximately 30 hours to fit the final model using a 

single 2.5GHz core on the Monash University computing cluster. However, Steps A3.1 through A3.3 (see 

Strategy A in the previous section) of that process took only 3 hours, meaning that once reasonable 

starting values were used for the five class-specific longitudinal BMI trajectories the estimation time 

decreased dramatically.  

5. Choice of individual-level random effects structure 

We considered adding additional individual-level random effects to the model. Specifically, we 

considered including individual-level random effects for the coefficients of the cubic splines basis terms. 

However, this led to a model where the predicted BMI trajectory for each latent class was relatively 

stable/flat, with the latent classes primarily distinguished by different starting/average BMI values, or 

differences in the event rates, and not by differences in the shapes of the longitudinal BMI trajectories 

(see Figure S4). That is, in a model that included individual-level random effects for the cubic spline 

terms, variation in the shapes of the longitudinal BMI trajectories appeared to be attributed to between-

individual (i.e. within-class) heterogeneity.  

Accordingly, we chose to simplify the individual-level random effects structure in our model (that is, only 

include an individual-level random intercept). By doing this, we believe that differences in the shapes of 

the longitudinal profiles are exhibited primarily through between-class differences, and less absorbed by 

within-class (between-individual) variation. We believe that this approach more closely aligns with our 

study objectives, specifically to explore differences in the shapes of the class-specific longitudinal BMI 

trajectories, and how those are associated with differences in the class-specific rates of the competing 

events. 
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6. Results for the six-class joint model 

Figure S5 shows the predicted BMI trajectories and cause-specific hazard functions, for each latent class, 

based on the six-class model. The covariate values used in the predictions are the same as used for the 

hazard functions in Figure 2 of the main manuscript. The difference here is that Figure S5 is for the six-

class model, whereas Figure 2 in the main manuscript is for the five-class model.  

As discussed in the main manuscript, we calculated Bayesian information criterion (BIC) values for 

models with a varying number of latent classes. The BIC values suggested that higher numbers of latent 

classes consistently resulted in a better fitting model. However, as the number of latent classes increased, 

the groups became less distinguished from one another (accompanied by a decrease in relative entropy, 

see Table 1 of the manuscript) and therefore less useful in terms of drawing meaningful conclusions from 

a clinical perspective. That is, based on a purely statistical criterion (the BIC), there is a suggestion that 

increasing numbers of classes are better, but from an interpretational perspective an ever-increasing 

number of latent classes was not useful. We therefore chose the five-class model as our final model.  

It can be seen in Figure S5 that, for the six-class model, the main difference from the five-class model is 

that the “late BMI decline” class is split based on baseline BMI values and associated hazard rates for 

transplant. Since our primary interest is in the association between BMI and risk of death, we determined 

that increasing the number of latent classes to six was not warranted and we had similar conclusions from 

exploratory analysis with models having higher numbers of classes.  

7. Cumulative incidence functions 

The cause-specific hazard functions presented in Figure 2 of the main manuscript show the instantaneous 

rates (i.e. “hazard”) of each event at time t, given that the individual is still at risk of the event. 

Alternatively, we can present cumulative incidence functions for each of the competing events; these are 

shown in Figures S6 (without 95% confidence limits) and S7 (with 95% confidence limits), for the same 

covariate profile as used for the hazard functions in Figure 2 of the main manuscript. The cumulative 

incidence functions show the cumulative risk (i.e. probability) of the event having occurred at any point 

up to time t.  

Broadly speaking, the cause-specific hazard functions are useful for understanding the potential for 

etiological associations between the class-specific BMI trajectories and the occurrence of the competing 

events and thus more suited to the aims of our manuscript. On the other hand, the cumulative incidence 

functions are generally suited to understanding patient prognosis; for example, “what is the probability 

that a patient in latent class X will experience death within 5 years”. 

Importantly, the cumulative incidence function for one of the events, say death, depends on the hazard 

rates for both of the competing events. For example, whether a patient dies within 5 years depends partly 

on the rate of death, and partly on their rate of the competing event of transplant. Therefore, the 

association of a characteristic, say BMI, and the cumulative incidence function of an event, say death 

(without transplant), will depend on the associations between BMI and the hazard of both competing 

events, say death (without transplant) and transplant. Thus, in general, the association of a characteristic 

with the hazard of an event will be different to that with the cumulative incidence function of the same 

event, and in extreme cases could even be in opposite directions [4]. If the aims of our paper had been 

related to developing a model for patient prognosis, then we would have been interested in measures of 

184



predictive performance for the fitted models. Moreover, issues such as non-proportional hazards would 

have been more relevant since they can have a significant impact on the prognostic performance of the 

fitted model. 

For a more thorough discussion of the differences between cause-specific hazard functions and 

cumulative incidence functions, and how they each align with the intended aims of a study, we refer the 

reader to Koller et al. [5]. 

8. Goodness of fit of the final model (observed vs predicted longitudinal trajectories) 

Figures S8 and S9 show observed and predicted, class-specific, longitudinal BMI trajectories. They are 

based on weighted means of the observed and predicted BMI values. The weighting refers to the 

estimated class membership probabilities for each individual, whilst the means are taken by splitting the 

distribution of observed measurement times into 15 quantiles (i.e. 15 “bins”).  

The plots show that the predicted mean longitudinal trajectories generally provide a good fit to the 

observed data. There is some discrepancy between the observed and marginal predicted BMI values 

beyond 2.5 years for the “rapid BMI decline” class (i.e. the black curve in Figure S8). However, this is 

probably due to the fact that this class has a relatively small number of patients overall, and has a high 

mortality rate early on in the follow up period. Therefore, the majority of the BMI measurements for this 

class are observed earlier in the follow up period. Because the bulk of the data is observed earlier in the 

follow up period the spline-based trajectory is seen to fit best in that region, whereas it has insufficient 

flexibility to capture the stabilising of the BMI curve after 2.5 years. Note however, that incorporating the 

subject-specific random intercept (i.e. the subject-specific predictions in Figure S9) resolves the 

discrepancy between the observed and predicted BMI values. 

9. GRoLTS checklist 

Table S2 shows a completed GRoLTS (Guidelines for Reporting on Latent Trajectory Studies) checklist 

for our study [6].  

(To satisfy Item #15 of the GRoLTS checklist we have also included another file in our online 

Supplementary Materials entitled “table_full_model_estimates.txt”. This plain text file includes an 

unformatted table of the entire list of parameter estimates from the final model.) 
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Table S1. Mean posterior probabilities of class membership, stratified by class membership (as 

determined by an individual’s highest class-specific probability, and shown on the rows).    

 Class membership 

(% of patients) 

Mean probabilities of class membership 

Prob 

(Class A) 

Prob 

(Class B) 

Prob 

(Class C) 

Prob 

(Class D) 

Prob 

(Class E) 

Class A (74.7%) 0.89 0.04 0.04 0.01 0.03 

Class B (13.8%) 0.11 0.73 0.09 0.03 0.04 

Class C (6.2%) 0.13 0.08 0.77 0.03 0.00 

Class D (1.5%) 0.07 0.02 0.10 0.81 0.00 

Class E (3.9%) 0.13 0.08 0.00 0.00 0.78 
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Table S2. GRoLTS checklist. 

GRoLTS checklist item Yes/No Additional comments 

1. Is the metric of time used in the statistical 

model reported?  

Yes Time metric is years. 

2. Is information presented about the mean 

and variance of time within a wave?  

NA Exact time of the measurement (ANZDATA 

survey date - baseline date) is used in the 

analysis, so time-structured data is not relevant 

in this study. 

3a. Is the missing data mechanism reported?  Yes 
 

3b. Is a description provided of what 

variables are related to attrition/missing 

data?  

Yes 
 

3c. Is a description provided of how missing 

data in the analyses were dealt with?  

Yes Described in the Methods section in the 

manuscript, and supported by Figure S1 in the 

Supplementary Materials. 

4. Is information about the distribution of 

the observed variables included? 

Yes Described in the model specification in the 

manuscript. 

5. Is the software mentioned?  Yes 
 

6a. Are alternative specifications of within-

class heterogeneity considered (e.g., LGCA 

vs. LGMM) and clearly documented? If not, 

was sufficient justification provided as to 

eliminate certain specifications from 

consideration? 

Yes We wish to allow for some between-individual 

variation within classes. Accordingly, we 

allow for this within-class heterogeneity 

through individual-level random effects, as 

described in the model specification.  

6b. Are alternative specifications of the 

between-class differences in variance–

covariance matrix structure considered and 

clearly documented? If not, was sufficient 

justification provided as to eliminate certain 

specifications from consideration? 

Yes Our supplementary materials describe our 

choice of structure for the individual-level 

random effects, as well as the predictions 

under a model with a more extensive 

individual-level random effects structure 

(including random effects for the spline 

terms). 

7. Are alternative shape/functional forms of 

the trajectories described?  

Yes We believe cubic splines with 3 df provide 

sufficient flexibility to capture the underlying 

functional form of the longitudinal trajectories. 

In addition, the goodness of fit plots (observed 

vs predicted) suggest that this is the case.  

8. If covariates have been used, can 

analyses still be replicated?  

NA The data for this study is not publically 

available. 

9. Is information reported about the number 

of random start values and final iterations 

included?  

Yes In the Supplementary Materials. 

10. Are the model comparison (and 

selection) tools described from a statistical 

perspective?  

Yes A subsection is contained in the Methods 

section of the manuscript. 
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11. Are the total number of fitted models 

reported, including a one-class solution?  

Yes Table 1 in the manuscript presents the 

different models that were considered. Note 

that the one-class solution is not appropriate 

for answering the research question in this 

study, since the one-class joint model 

corresponds to the assumption of no 

association between the longitudinal BMI 

trajectories and death/transplant event rates. 

12. Are the number of cases per class 

reported for each model (absolute sample 

size, or proportion)?  

Yes Table 1 in the manuscript. 

13. If classification of cases in a trajectory 

is the goal, is entropy reported?  

Yes Relative entropy is shown in Table 1. In 

addition, the mean posterior probabilities of 

class membership, stratified by class 

membership are presented in Table S1 in the 

Supplementary Materials.   

14a. Is a plot included with the estimated 

mean trajectories of the final solution?  

Yes Figure 2 in the manuscript. 

14b. Are plots included with the estimated 

mean trajectories for each model?  

Yes We provide plots of the six-class model, and 

an alternative model specification that includes 

additional individual-level random effects. It is 

infeasible to include plots of every model in 

our manuscript or supplementary. 

14c. Is a plot included of the combination of 

estimated means of the final model and the 

observed individual trajectories split out for 

each latent class? 

Yes It is infeasible for us to plot all observed 

trajectories for the given sample size. But, we 

have provided plots of the mean predicted and 

mean observed BMI values across follow up; 

this answers a slightly different but 

nonetheless related question about goodness of 

fit. 

15. Are characteristics of the final class 

solution numerically described (i.e., means, 

SD/SE, n, CI, etc.)?  

Yes Included in a separate .txt document in the 

supplementary materials. 

16. Are the syntax files available (either in 

the appendix, supplementary materials, or 

from the authors)?  

Yes Example code is provided in the 

Supplementary Materials. The data is not 

publically available. 
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Figure S1. Flowchart showing numbers of patients excluded from the analysis. 
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Figure S2. Observed BMI trajectories for a random sample of 25 patients. 
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Figure S3. Predicted longitudinal BMI trajectories (left panel) and cause-specific hazard functions for 

death without transplant (middle panel) and transplant (right panel) for the alternative solution for the 

five-class model found using random initial values. The BMI predictions are on average (since no 

covariates were included in the BMI submodel), whilst the event outcome predictions are for a 

Caucasian male, aged ≤50 years, initiating RRT between 2005-09 with diabetic nephropathy, 

cerebrovascular disease and coronary artery disease. 
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Figure S4. Predicted longitudinal BMI trajectories (left panel) and cause-specific hazard functions for 

death without transplant (middle panel) and transplant (right panel) for the five-class joint model after 

including individual-level random effects for the cubic splines (for the longitudinal BMI 

trajectories). The BMI predictions are on average (since no covariates were included in the BMI 

submodel), whilst the event outcome predictions are for a Caucasian male, aged ≤50 years, initiating 

RRT between 2005-09 with diabetic nephropathy, cerebrovascular disease and coronary artery 

disease. 
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Figure S5. Predicted longitudinal BMI trajectories (left panel) and cause-specific hazard functions for 

death without transplant (middle panel) and transplant (right panel) from the six-class model. The 

BMI predictions are on average (since no covariates were included in the BMI submodel), whilst the 

event outcome predictions are for a Caucasian male, aged ≤50 years, initiating RRT between 2005-09 

with diabetic nephropathy, cerebrovascular disease and coronary artery disease. 
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Figure S6. Predicted longitudinal BMI trajectories (left panel) and cumulative incidence functions 

for death without transplant (middle panel) and transplant (right panel) from the five-class model. The 

predictions are shown for each of the five possible latent classes. The BMI predictions are on average 

(since no covariates were included in the BMI submodel), whilst the event outcome predictions are 

for a Caucasian male, aged ≤50 years, initiating RRT between 2005-09 with diabetic nephropathy, 

cerebrovascular disease and coronary artery disease. These are the cumulative incidence functions for 

the same covariate profile as for the hazard functions shown in Figure 2 in the main manuscript. 
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Figure S7. These are the same figures as described in Figure S6, but with 95% confidence limits 

included in the plots.  
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Figure S8. Observed and predicted BMI trajectories (marginal predictions). The plot shows class-

specific BMI trajectories based on weighted means of the observed BMI data (with 95% confidence 

limits) and weighted means of the marginal predictions. The weighting is based on class membership 

probabilities, whilst the means are taken by splitting the distribution of observed measurement times 

into 15 quantiles (i.e. 15 “bins”). 
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Figure S9. Observed and predicted BMI trajectories (subject-specific predictions). The plot shows 

class-specific BMI trajectories based on weighted means of the observed BMI data (with 95% 

confidence limits) and weighted means of the subject-specific predictions. The weighting is based on 

class membership probabilities, whilst the means are taken by splitting the distribution of observed 

measurement times into 15 quantiles (i.e. 15 “bins”). 
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Appendix C. Supplementary materials for Chapter 6 paper 

This appendix herein contains the supplementary materials for the following paper that was 

presented in Chapter 6: 

Brilleman SL, Crowther MJ, Moreno-Betancur M, Buros Novik J, Dunyak J, Al-Huniti 

N, Fox R, Hammerbacher J, Wolfe R. Joint longitudinal and time-to-event models for 

multilevel hierarchical data. Submitted for publication. 
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Supplementary material for: “Joint longitudinal and time-to-event 

models for multilevel hierarchical data” 

Samuel L Brilleman, Michael J. Crowther, Margarita Moreno-Betancur, Jacqueline Buros Novik, 

James Dunyak, Nidal Al-Huniti, Robert Fox, Jeff Hammerbacher, Rory Wolfe 

1. Further details on the model estimation 

Our Bayesian specification requires prior distributions on all unknown parameters. We refer the 

reader to the documentation of the rstanarm R package for details on prior distributions, since our 

model was estimated using default priors implemented in the package. In brief, we used weakly 

informative normal distributions for each of the regression coefficients (fixed effects). The residual 

standard deviation (for the longitudinal outcome) was given a weakly informative half-Cauchy 

distribution. The B-spline coefficients for the log baseline hazard were given weakly informative 

Cauchy distributions. The weakly informative priors were only intended to reduce support given to 

values of the parameters that would seem implausible based on the scale of magnitude of the data. 

They were not intended to provide support to specific parameter values based on prior knowledge 

or expert opinion.  

For estimation of the model parameters we ran four MCMC chains in parallel, each with 1000 

sample iterations preceded by a warm up period of 1000 iterations (i.e. 2000 iterations in total, of 

which 50% were warm up). Although this number of iterations would seem small for a complex 

model estimated using a Gibbs sampler, the estimation in Stan is based on a Hamiltonian Monte 

Carlo (HMC) algorithm, not Gibbs sampling. The HMC results in much lower autocorrelation 

between subsequent MCMC draws compared with Gibbs sampling, and therefore is much more 

efficient in terms of the effective sample size per iteration. For example, for each of the models 

with an association structure based on the expected value, the effective sample size for the estimated 

association parameter was 4000. 

A potential limitation of the proposed approach is the additional computational complexity. 

Additional clustering factors mean that there are an increasing number of cluster-specific 

parameters (i.e. random effects) to be estimated and therefore computation time increases. In our 

application with 430 patients having a total of 1209 lesions, there were 430 patient-specific 

parameters (intercept only) and 3627 lesion-specific parameters (intercept and two polynomial 

terms) to be estimated. Computation time for the models with an association structure based on the 

expected value ranged between 1.5 and 3 hours. The differences in computation time were partly 

related to the random nature of the different MCMC chains, and partly related to the type of 

summary function used in the association structure (i.e. the sum, average, maximum, or minimum 

of the level 2 clusters). The type of association structure is of course part of the model definition 

and therefore the choice of association structure will have an influence on the shape of the target 

posterior distribution, with some resulting posteriors easier for the MCMC sampler to explore (i.e. 

less extreme curvature in the posterior). When the association structure was based on both the 

expected value and the slope, the computation times were slightly longer; ranging between 2 and 

5.5 hours. These times are based on 1000 warm up iterations, followed by 1000 sample iterations, 

on a standard quad-core desktop with a 3.30GHz processor and 8GB RAM.  
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2. Example code for fitting the model 

The model in the paper can be easily estimated after downloading the rstanarm R package from the 

Comprehensive R Archive Network (CRAN). To download and install rstanarm, type the following 

into your R console: 

install.packages("rstanarm") 
 

And then an example of the code used to fit the model presented in Table 2 of the main manuscript 

would be: 

library(rstanarm) 

mod <- stan_jm( 

  formulaLong = ldiam ~  

    cat * poly(months, degree = 2) + 

    (poly(months, degree = 2) | lesid_usubjid) +  

    (1 | usubjid),  

  dataLong = ipass$lesions, 

  formulaEvent = Surv(progmnth, censor_p) ~ whostat,  

  dataEvent = ipass$surv, 

  seed = 9837355, time_var = "months", id_var = "usubjid", 

  assoc = c("etavalue", "etaslope"), grp_assoc = "max") 
 

Where ipass$lesions is a data frame containing the outcome and covariate data for the longitudinal 

submodel, and ipass$surv is a data frame containing the outcome and covariate data for the event 

submodel. Unfortunately, since the IPASS data used in the application in the main manuscript is 

not publically available, we cannot provide the reader with these data frames. 
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Appendix D. Vignettes for the simsurv R package 

This appendix contains the vignettes for the simsurv R package (Brilleman, 2018b). There 

are two vignettes. Together, they provide more detailed information about the simsurv 

package, to accompany the material provided in Chapter 5 of the thesis. 

The first vignette provides examples of usage of the simsurv package. In Chapter 5, the 

only example shown was simulating event times under a joint longitudinal and time-to-

event model. However, in the vignette there are examples showing how to simulate event 

times from standard parametric survival distributions, two-component mixture 

distributions, and a survival model with non-proportional hazards. 

The second vignette provides the technical background to the methods underpinning the 

simsurv package. This is similar to the details provided in Chapter 5, however, the vignette 

also includes explicit details on the parameterisations used for each of the distributions in 

simsurv. 

  

203



How to use the simsurv package
Sam Brilleman

2018-03-09
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Preamble

This vignette provides examples demonstrating usage of the simsurv package. For a technical vignette
describing the methods underpinning the package, please see Technical background to the simsurv package.

Note that this package is modelled on the survsim Stata package. For comparability, the majority of
the following examples are based on Crowther and Lambert (2012), which is the supporting paper for the
survsim Stata package.

Usage examples

Example 1: Simulating under a standard parametric survival model

This first example shows how the simsurv package can be used to generate event times under a relatively
standard Weibull proportional hazards model. This will be demonstrated as part of a simple simulation
study.

The simulated event times will be generated under the following conditions:

• a monotonically increasing baseline hazard function, achieved by specifying a Weibull baseline
hazard with a γ parameter of 1.5;

• the effect of a protective treatment obtained by specifying a binary covariate with log hazard ratio
of -0.5;

• a maximum follow up time by censoring any individuals with a simulated survival time larger than
five years.

The objective of the simulation study will be to assess the bias and coverage of the estimated treatment
effect. This will be achieved by:

• generating 100 simulated datasets (ideally it should be more than 100 datasets, but we don’t want
the vignette to take forever to build!), each containing N = 200 individuals;

• fitting a Weibull proportional hazards model to each simulated dataset using the flexsurv package;
• calculating mean bias and mean coverage (of the estimated treatment effect) across the 100 simulated

datasets.

The code for performing the simulation study and the results are shown below.
# Define a function for analysing one simulated dataset
sim_run <- function() {

# Create a data frame with the subject IDs and treatment covariate
cov <- data.frame(id = 1:200,

trt = rbinom(200, 1, 0.5))

# Simulate the event times
dat <- simsurv(lambdas = 0.1,

gammas = 1.5,
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betas = c(trt = -0.5),
x = cov,
maxt = 5)

# Merge the simulated event times onto covariate data frame
dat <- merge(cov, dat)

# Fit a Weibull proportional hazards model
mod <- flexsurv::flexsurvspline(Surv(eventtime, status) ~ trt, data = dat)

# Obtain estimates, standard errors and 95% CI limits
est <- mod$coefficients[["trt"]]
ses <- sqrt(diag(mod$cov))[["trt"]]
cil <- est + qnorm(.025) * ses
ciu <- est + qnorm(.975) * ses

# Return bias and coverage indicator for treatment effect
c(bias = est - (-0.5),

coverage = ((-0.5 > cil) && (-0.5 < ciu)))
}

# Set seed for simulations
set.seed(908070)

# Perform 100 replicates in simulation study
rowMeans(replicate(100, sim_run()))

## bias coverage
## 0.005858079 0.930000000

Here we see that there is very little bias in the estimates of the log hazard ratio for the treatment effect,
and the 95% confidence intervals are near their intended level of coverage.

Example 2: Simulating under a flexible parametric survival model

Next, we will simulate event times under a slightly more complex parametric survival model that
incorporates a flexible baseline hazard.

In this example we will use the publically accessible German breast cancer dataset. This dataset is
included with the simsurv R package (see help(simsurv::brcancer) for a description of the dataset).
Let us look at the first few rows of the dataset:
data("brcancer")
head(brcancer)

## id hormon rectime censrec
## 1 1 0 1814 1
## 2 2 1 2018 1
## 3 3 1 712 1
## 4 4 1 1807 1
## 5 5 0 772 1
## 6 6 0 448 1

Now let us fit two parametric survival models to the breast cancer data:

• one Weibull survival model; and
• one flexible parametric survival model

The flexible parametric survival model will be based on the method of Royston and Parmar (2002);
i.e. restricted cubic splines are used to approximate the log cumulative baseline hazard. This model can
be estimated using the flexsurvspline function from the flexsurv package (Jackson (2016)).
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We will use three internal knots (i.e. four degrees of freedom) for the restricted cubic splines with the
knot points placed at evenly spaced percentiles of the distribution of observed event time (obtained by
specifying the argument k = 3 in the code below). We can also estimate the Weibull proportional hazards
model using the flexsurvspline function from the flexsurv package, by specifying no internal knots
(i.e. specifying k = 0).
# Fit the Weibull survival model
mod_weib <- flexsurv::flexsurvspline(Surv(rectime, censrec) ~ hormon,

data = brcancer, k = 0)

# Fit the flexible parametric survival model
mod_flex <- flexsurv::flexsurvspline(Surv(rectime, censrec) ~ hormon,

data = brcancer, k = 3)

Now let us compare the fit of the two models by plotting each of the fitted survival functions on top of
the Kaplan-Meier survival curve.
par(mfrow = c(1,2), cex = 0.85) # graphics parameters
plot(mod_weib,

main = "Weibull model",
ylab = "Survival probability",
xlab = "Time")

plot(mod_flex,
main = "Flexible parametric model",
ylab = "Survival probability",
xlab = "Time")
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There is evidence in the plots that the flexible parametric model fits the data better than the standard
Weibull model. Therefore, if we wanted to simulate event times from a data generating process similar to
that of the breast cancer data, then using a Weibull distribution may not be adequate. Rather, it would
be more appropriate to simulate event times under the flexible parametric model. We will demonstrate
how the simsurv package can be used to do this. The estimated parameters from the flexible parametric
model will be used as the “true” parameters for the simulated event times.

The event times can be generated under a user-specified log cumulative hazard function that is equivalent
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to the Royston and Parmar specification used by the flexsurv package. First, the log cumulative hazard
function for this model needs to be defined as a function in the R session. The user-defined function
passed to simsurv must always have the following three arguments:

• t: scalar specifying the current time at which to evaluate the hazard
• x: a named list with the covariate data
• betas: a named list with the “true” parameters

Each of these arguments provide information that is used in evaluating the hazard hi(t), log hazard
log hi(t), cumulative hazard Hi(t), or log cumulative hazard logHi(t) (depending on which type of
user-specified function is being provided). These three arguments (t, x, betas) can then be followed in
the function signature by any additional arguments that may be necessary. For example, in the function
definition below, the first three arguments are followed by an additional argument knots, which allows
the calculation of the log cumulative hazard at time t to depend on the knot locations for the splines.
# Define a function returning the log cum hazard at time t
logcumhaz <- function(t, x, betas, knots) {

# Obtain the basis terms for the spline-based log
# cumulative hazard (evaluated at time t)
basis <- flexsurv::basis(knots, log(t))

# Evaluate the log cumulative hazard under the
# Royston and Parmar specification
res <-

betas[["gamma0"]] * basis[[1]] +
betas[["gamma1"]] * basis[[2]] +
betas[["gamma2"]] * basis[[3]] +
betas[["gamma3"]] * basis[[4]] +
betas[["gamma4"]] * basis[[5]] +
betas[["hormon"]] * x[["hormon"]]

# Return the log cumulative hazard at time t
res

}

Next, we will show how to use the simsurv function to simulate event times under the flexible parametric
model. To demonstrate this, we will again generate the event times as part of a simulation study. The
objective of the simulation study will be to assess the bias and coverage of the estimated log hazard ratio
for hormone therapy. This will be achieved by:

• generating 100 simulated datasets (ideally it should be more than 100 datasets, but we don’t want
the vignette to take forever to build!), each containing N = 200 individuals. The simulated event
times will be generated under our flexible parametric model (with the “true” parameter values
taken from fitting a model to the German breast cancer data);

• fitting both a Weibull model and a flexible parameteric model to each simulated dataset;
• calculating the mean bias (across the 100 simulated datasets) in the log hazard ratio for hormone

therapy under the Weibull model and the flexible parametric models.
# Fit the model to the brcancer dataset to obtain the "true"
# parameter values that will be used in our simulation study
true_mod <- flexsurv::flexsurvspline(Surv(rectime, censrec) ~ hormon,

data = brcancer, k = 3)

# Define a function to generate one simulated dataset, fit
# our two models (Weibull and flexible) to the simulated data
# and then return the bias in the estimated effect of hormone
# therapy under each fitted model
sim_run <- function(true_mod) {

# Create a data frame with the subject IDs and treatment covariate
cov <- data.frame(id = 1:200, hormon = rbinom(200, 1, 0.5))
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# Simulate the event times
dat <- simsurv(betas = true_mod$coefficients, # "true" parameter values

x = cov, # covariate data for 200 individuals
knots = true_mod$knots, # knot locations for splines
logcumhazard = logcumhaz, # definition of log cum hazard
maxt = NULL, # no right-censoring
interval = c(1E-8,100000)) # interval for root finding

# Merge the simulated event times onto covariate data frame
dat <- merge(cov, dat)

# Fit a Weibull proportional hazards model
weib_mod <- flexsurv::flexsurvspline(Surv(eventtime, status) ~ hormon,

data = dat, k = 0)

# Fit a flexible parametric proportional hazards model
flex_mod <- flexsurv::flexsurvspline(Surv(eventtime, status) ~ hormon,

data = dat, k = 3)

# Obtain estimates, standard errors and 95% CI limits for hormone effect
true_loghr <- true_mod$coefficients[["hormon"]]
weib_loghr <- weib_mod$coefficients[["hormon"]]
flex_loghr <- flex_mod$coefficients[["hormon"]]

# Return bias and coverage indicator for hormone effect
c(weib_bias = weib_loghr - true_loghr,

flex_bias = flex_loghr - true_loghr)
}

# Set a seed for the simulations
set.seed(543543)

# Perform the simulation study using 100 replicates
rowMeans(replicate(100, sim_run(true_mod = true_mod)))

## weib_bias flex_bias
## -0.013141112 0.007088905

Example 3: Simulating under a Weibull model with time-dependent effects

This short example shows how to simulate data under a standard Weibull survival model that incorporates
a time-dependent effect (i.e. non-proportional hazards). For the time-dependent effect we will include a
single binary covariate (e.g. a treatment indicator) with a protective effect (i.e. a negative log hazard
ratio), but we will allow the effect of the covariate to diminish over time. The data generating model will
be

hi(t) = γλ(tγ−1) exp(β0Xi + β1Xi × log(t))

where Xi is the binary treatment indicator for individual i, λ and γ are the scale and shape parameters
for the Weibull baseline hazard, β0 is the log hazard ratio for treatment when t = 1 (i.e. when log(t) = 0),
and β1 quantifies the amount by which the log hazard ratio for treatment changes for each one unit
increase in log(t). Here we are assuming the time-dependent effect is induced by interacting the log
hazard ratio with log time, but we could have used some other function of time (for example linear time,
t, or time squared, t2, if we had wanted to).

We will simulate data for N = 5000 individuals under this model, with a maximum follow up time of five
years, and using the following “true” parameter values for the data generating model:
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• β0 = −0.5
• β1 = 0.15
• λ = 0.1
• γ = 1.5

covs <- data.frame(id = 1:5000, trt = rbinom(5000, 1, 0.5))
simdat <- simsurv(dist = "weibull", lambdas = 0.1, gammas = 1.5, betas = c(trt = -0.5),

x = covs, tde = c(trt = 0.15), tdefunction = "log", maxt = 5)
simdat <- merge(simdat, covs)
head(simdat)

## id eventtime status trt
## 1 1 1.547790 1 0
## 2 2 3.290966 1 1
## 3 3 3.002969 1 0
## 4 4 5.000000 0 0
## 5 5 4.227842 1 0
## 6 6 4.044081 1 0

Then let us fit a flexible parametric model with two internal knots (i.e. 3 degrees of freedom) for the
baseline hazard, and a time-dependent hazard ratio for the treatment effect. For the time-dependent
hazard ratio we will use an interaction with log time (the same as used in the data generating model);
this can be easily achieved using the stpm2 function from the rstpm2 package (Clements and Liu (2017))
and specifying the tvc option. Note that the rstpm2 package and flexsurv packages can both be used
to fit the Royston and Parmar flexible parametric survival model, however, they differ slightly in their
post-estimation functionality and other possible extensions. Here, we use the rstpm2 package because it
allows us to easily specify time-dependent effects and then plot the time-dependent hazard ratio after
fitting the model (as shown in the code below).

The model with the time-dependent effect for treatment can be estimated using the following code
mod_tvc <- rstpm2::stpm2(Surv(eventtime, status) ~ trt,

data = simdat, tvc = list(trt = 1))

And for comparison we can fit the corresponding model, but without the time-dependent effect for
treatment (i.e. assuming proportional hazards instead)
mod_ph <- rstpm2::stpm2(Surv(eventtime, status) ~ trt,

data = simdat)

Now, we can plot the time-dependent hazard ratio and the time-fixed hazard ratio on the same plot
region using the following code
plot(mod_tvc, newdata = data.frame(trt = 0), type = "hr",

var = "trt", ylim = c(0,1), ci = TRUE, rug = FALSE,
main = "Time dependent hazard ratio",
ylab = "Hazard ratio", xlab = "Time")

plot(mod_ph, newdata = data.frame(trt = 0), type = "hr",
var = "trt", ylim = c(0,1), add = TRUE, ci = FALSE, lty = 2)
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From the plot we can see the diminishing effect of treatment under the model with the time-dependent
hazard ratio; as time increases the hazard ratio approaches a value of 1. Moreover, note that the hazard
ratio is approximately equal to a value of 0.6 (i.e. exp(−0.5)) when t = 1, which is what we specified in
the data generating model.

Example 4: Simulating under a joint model for longitudinal and survival data

This example shows how the simsurv package can be used to simulate event times under a shared
parameter joint model for longitudinal and survival data.

We will simulate event times according to the following model formulation for the longitudinal submodel

Yi(t) ∼ N(µi(t), σ2
y)

µi(t) = β0i + β1it+ β2x1i + β3x2i

β0i = β00 + b0i

β1i = β10 + b1i

(b0i, b1i)T ∼ N(0,Σ)

and the event submodel

hi(t) = δ(tδ−1) exp(γ0 + γ1x1i + γ2x2i + αµi(t))

where x1i is an indicator variable for a binary covariate, x2i is a continuous covariate, b0i and b1i are
individual-level parameters (i.e. random effects) for the intercept and slope for individual i, the β and γ
terms are population-level parameters (i.e. fixed effects), and δ is the shape parameter for the Weibull
baseline hazard.
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This specification allows for an individual-specific linear trajectory for the longitudinal submodel, a
Weibull baseline hazard in the event submodel, a current value association structure, and the effects of a
binary and a continuous covariate in both the longitudinal and event submodels.

To simulate from this model using simsurv, we need to first explicitly define the hazard function. The
code defining a function that returns the hazard for this joint model is
# First we define the hazard function to pass to simsurv
# (NB this is a Weibull proportional hazards regression submodel
# from a joint longitudinal and survival model with a "current
# value" association structure)
haz <- function(t, x, betas, ...) {

betas[["delta"]] * (t ^ (betas[["delta"]] - 1)) * exp(
betas[["gamma_0"]] +
betas[["gamma_1"]] * x[["x1"]] +
betas[["gamma_2"]] * x[["x2"]] +
betas[["alpha"]] * (

betas[["beta_0i"]] +
betas[["beta_1i"]] * t +
betas[["beta_2"]] * x[["x1"]] +
betas[["beta_3"]] * x[["x2"]]

)
)

}

The next step is to define the true parameter values and covariate data for each individual. This is
achieved by specifying two data frames: one for the parameter values, and one for the covariate data.
Each row of the data frame will correspond to a different individual. The R code to achieve this is
# Then we construct data frames with the true parameter
# values and the covariate data for each individual
set.seed(5454) # set seed before simulating data
N <- 200 # number of individuals

# Population (fixed effect) parameters
betas <- data.frame(

delta = rep(2, N),
gamma_0 = rep(-11.9,N),
gamma_1 = rep(0.6, N),
gamma_2 = rep(0.08, N),
alpha = rep(0.03, N),
beta_0 = rep(90, N),
beta_1 = rep(2.5, N),
beta_2 = rep(-1.5, N),
beta_3 = rep(1, N)

)

# Individual-specific (random effect) parameters
b_corrmat <- matrix(c(1, 0.5, 0.5, 1), 2, 2)
b_sds <- c(20, 3)
b_means <- rep(0, 2)
b_z <- MASS::mvrnorm(n = N, mu = b_means, Sigma = b_corrmat)
b <- sapply(1:length(b_sds),

FUN = function(x) b_sds[x] * b_z[,x])
betas$beta_0i <- betas$beta_0 + b[,1]
betas$beta_1i <- betas$beta_1 + b[,2]

# Covariate data
covdat <- data.frame(

x1 = stats::rbinom(N, 1, 0.45), # a binary covariate
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x2 = stats::rnorm(N, 44, 8.5) # a continuous covariate
)

The final step is to then generate the simulated event times using a call to the simsurv function. The
only arguments that need to be specified are the user-defined hazard function, the true parameter values,
and the covariate data. In this example we will also specify a maximum follow up time of ten units (for
example, ten years, after which individuals will be censored if they have not yet experienced the event).

The code to generate the simulated event times is
# Set seed for simulations
set.seed(546546)

# Then simulate the survival times based on the user-defined
# hazard function, covariates data, and true parameter values
times <- simsurv(hazard = haz, x = covdat, betas = betas, maxt = 10)

We can them examine the first few rows of the resulting data frame, to see the simulated event times and
event indicator
head(times)

## id eventtime status
## 1 1 7.676123 1
## 2 2 10.000000 0
## 3 3 1.142881 1
## 4 4 2.429828 1
## 5 5 6.901241 1
## 6 6 7.748474 1

## id eventtime status
## 1 4.813339 1
## 2 9.763900 1
## 3 5.913436 1
## 4 2.823562 1
## 5 2.315488 1
## 6 10.000000 0

Of course, we have only simulated the event times here; we haven’t simulated any observed values
for the longitudinal outcome. Moreover, although the simsurv package can be used for simulating
joint longitudinal and time-to-event data, it did take a bit of work and several lines of code to achieve.
Therefore, it is worth noting that the simjm package (https://github.com/sambrilleman/simjm), which
acts as a wrapper for simsurv, is designed specifically for this purpose. It can make the process a lot
easier, since it shields the user from much of the work described in this example. Instead, the user can
simulate joint longitudinal and time-to-event data using one function call to simjm::simjm and a number
of optional arguments are available to alter the exact specification of the shared parameter joint model.
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Preamble

This vignette herein describes the methodology used to simulate event times in the simsurv package.
For a vignette related to usage of the package, including examples and code, please see How to use the
simsurv package.

Introduction

The survival function for individual i is the probability that their true event time T ∗
i is greater than the

current time t. That is, the survival function can be defined as

Si(t) = P (T ∗
i > t)

Moreover, the corresponding probability of having failed at or before time t (i.e. having not survived up
to time t) is the complement to the survival function. That is, the probability of failure is defined as

Fi(t) = P (T ∗
i ≤ t) = 1 − Si(t)

If the survival time T ∗
i is known to be drawn from some parametric distribution, then it also holds

that the definition of the probability of failure, Fi(t), is equivalent to the definition of the cumulative
distribution function (CDF) for the distribution of event times. Moreover, probability distribution theory
tells us that the CDF for a continuous random variable must follow a uniform distribution on the range 0
to 1 (Mood et al. (1973)). That is, FX(X) ∼ U(0, 1) where FX(.) denotes the CDF for the continuous
random variable X. Similarly, the complement of the CDF for X must also follow a uniform distribution
on the range 0 to 1, that is, 1 − FX(X) ∼ U(0, 1).

These results therefore allow one to conclude that under a standard parametric distributional assumption
for the event times T ∗

i (i = 1, . . . , N), the survival probability for individual i at their true event time
will be a uniform random variable on the range 0 to 1. That is,

Si(T ∗
i ) = Ui ∼ U(0, 1)

It is then possible to extend these results to the setting of a proportional hazards model. Under a
proportional hazards model the survival probability for individual i at their event time T ∗

i can be written
as

Si(T ∗
i ) = exp

(
−H0(T ∗

i ) exp(XT
i β)

)
= Ui ∼ U(0, 1)
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where H0(t) =
∫ t

0 h0(s)ds is the cumulative baseline hazard evaluated at time t, and Xi is a vector of
covariates with associated population-level (i.e. fixed effect) parameters β.

Cumulative hazard inversion method (Bender et al. (2005))

Rearranging the equation for Si(t) and solving for t leads to the following general form for the inverted
survival function

S−1
i (u) = H−1

0
(
− log(u) exp(−XT

i β)
)

where S−1
i (u) is the inverted survival function for individual i, H−1

0 (u) corresponds to the inverted
cumulative baseline hazard function, and Xi is a vector of covariates with associated population-level
(i.e. fixed effect) parameters β.

Therefore, if the cumulative hazard function is invertible, we can easily simulate a new event time as

T si = S−1
i (Ui)

where T si is the simulated event times for individual i, S−1
i (u) is the inverted survival function defined

previously, and Ui is a random variable drawn from a U(0, 1) distribution. Note that if the cumulative
baseline hazard is directly invertible then an analytic form will be available for S−1

i (u). That is, we can
just plug in random draws of Ui and directly calcuate the simulated event times. Since independent draws
of a U(0, 1) random variable are easily obtained using any standard statistical software, this method will
be easy and fast for simulating event times.

This method was first proposed by Bender et al. (2005) and is commonly known as the cumulative hazard
inversion method.

For the standard parameteric survival distributions included in the simsurv package (i.e. Weibull,
exponential, Gompertz) an analytic form for S−1

i (u) does exist. Therefore, event times for these standard
parametric distributions (assuming proportional hazards) are generated using the cumulative hazard
inversion method. The parameterisations for each of these standard parametric distributions are shown
next.

Exponential distribution

For the exponential distribution we have the following:

hi(t) = λ exp(XT
i β)

Hi(t) = λt exp(XT
i β)

Si(t) = exp
(
−λt exp(XT

i β)
)

S−1
i (u) =

(
− log(u)

λ exp(XT
i β)

)
where λ > 0 is the rate parameter.
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Weibull distribution

For the Weibull distribution we have the following:

hi(t) = γλ(tγ−1) exp(XT
i β)

Hi(t) = λ(tγ) exp(XT
i β)

Si(t) = exp
(
−λ(tγ) exp(XT

i β)
)

S−1
i (u) =

(
− log(u)

λ exp(XT
i β)

)1/γ

where λ > 0 and γ > 0 are the scale and shape parameters, respectively.

Gompertz distribution

For the Gompertz distribution we have the following:

hi(t) = λ exp(γt) exp(XT
i β)

Hi(t) = λ(exp(γt) − 1)
γ

exp(XT
i β)

Si(t) = exp
(

−λ(exp(γt) − 1)
γ

exp(XT
i β)

)

S−1
i (u) = 1

γ
log
[(

−γ log(u)
λ exp(XT

i β)

)
+ 1
]

where λ > 0 and γ > 0 are the shape and scale parameters, respectively.

Numerical root finding

If the cumulative baseline hazard function is not invertible, then numerical root finding can be used to
solve to t. This method has been discussed by both Bender et al. (2005) and Crowther and Lambert
(2013). In simsurv this is required for the two-component mixture distributions (assuming proportional
hazards). An analytical form is available for the survival function of each of these distributions, but
numerical root finding must be used to invert the survival function. In practice, the simsurv package
uses the stats::uniroot function based on the method of Brent (1973). This means iteratively finding
a solution to the equation Si(t) − Ui = 0.

The two-component mixture distributions in simsurv are parameterised in the same way as the survsim
Stata package (Crowther and Lambert (2002)). That is, they are additive on the survival scale, with a
parameter defining the mixing proportions, i.e.

S0(t) = πS01(t) + (1 − π)S02(t)

where S0(t) is the baseline survival function, S01(t) and S02(t) are baseline survival functions for the two
component distributions, and 0 ≤ π ≤ 1 is the mixing parameter. The specific parameterisations for the
hazard and survival functions of each of the two-component mixture distributions in simsurv are shown
next.
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Exponential mixture distribution

For the two-component exponential mixture distribution we have the following:

hi(t) =
[
πλ1 exp(−λ1t) + (1 − π)λ2 exp(−λ2t)
π exp(−λ1t) + (1 − π) exp(−λ2t)

]
exp(XT

i β)

Hi(t) = − log [π exp(−λ1t) + (1 − π) exp(−λ2t)] exp(XT
i β)

Si(t) = [π exp(−λ1t) + (1 − π) exp(−λ2t)]exp(XT
i β)

where λ1 > 0 and λ2 > 0 are the rate parameters for the component exponential distributions.

Weibull mixture distribution

For the two-component Weibull mixture distribution we have the following:

hi(t) =
[
πγ1λ1(tγ1−1) exp(−λ1(tγ1)) + (1 − π)γ2λ2(tγ2−1) exp(−λ2(tγ2))

π exp(−λ1(tγ1)) + (1 − π) exp(−λ2(tγ2))

]
exp(XT

i β)

Hi(t) = − log [π exp(−λ1(tγ1)) + (1 − π) exp(−λ2(tγ2))] exp(XT
i β)

Si(t) = [π exp(−λ1(tγ1)) + (1 − π) exp(−λ2(tγ2))]exp(XT
i β)

where λ1 > 0 and λ2 > 0 are the scale parameters, and γ1 > 0 and γ2 > 0 are the shape parameters, for
the component Weibull distributions.

Gompertz mixture distribution

hi(t) =

πλ1 exp(γ1t) exp
(

−λ1(exp(γ1t)−1)
γ1

)
+ (1 − π)λ2 exp(γ2t) exp

(
−λ2(exp(γ2t)−1)

γ2

)
π exp

(
−λ1(exp(γ1t)−1)

γ1

)
+ (1 − π) exp

(
−λ2(exp(γ2t)−1)

γ2

)
 exp(XT

i β)

Hi(t) = − log
[
π exp

(
−λ1(exp(γ1t) − 1)

γ1

)
+ (1 − π) exp

(
−λ2(exp(γ2t) − 1)

γ2

)]
exp(XT

i β)

Si(t) =
[
π exp

(
−λ1(exp(γ1t) − 1)

γ1

)
+ (1 − π) exp

(
−λ2(exp(γ2t) − 1)

γ2

)]exp(XT
i β)

Extending to time-dependent effects or user-defined hazard functions

If one can obtain an algebraic closed-form solution for the inverse cumulative baseline hazard, H−1
0 (u),

then a major benefit of the cumulative hazard inversion method is that it is simple and computationally
efficient. Moreover, it can be used to generate survival times for a variety of standard parametric baseline
hazards, for example, the exponential, Weibull or Gompertz distributions. Even if the cumulative baseline
hazard cannot be inverted analytically then one can still use numerical root finding, as described in the
previous section, to numerically invert the survival function and solve for t.

However, using numerical root finding still requires an analytical form for the survival function. For
some complex data generating processes it may not be possible to obtain a closed-form solution to the
cumulative baseline hazard H0(t) and therefore the form of Si(t) will also be intractable. Crowther and
Lambert (2013) therefore proposed an extension to overcome these issues. Their extension incorporates
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both numerical root finding and numerical quadrature. The numerical quadrature is used to evaluate the
cumulative hazard in situations where it cannot be evaluated analytically.

An example of a situation where their method is required is the introduction of time-dependent effects
on the hazard scale (i.e. non-proportional hazards). The introduction of time-dependent effects often
leads to an intractable integral when evaluating the cumulative hazard. The method therefore involves
iterating between numerical quadrature and numerical root finding until an appropriate solution for t is
obtained. This is the method used by the simsurv package when the user supplies their own hazard or
log hazard function for generating the event times, or when they are simulating with time-dependent
effects (i.e. non-proportional hazards). The numerical integration is based on Gauss-Kronrod quadrature
with a default of 15 nodes (although the user can choose between 7, 11, or 15 nodes). For further details
on the method we refer the reader to the the paper by Crowther and Lambert (2013).
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